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INTEODUCTION.

"L':^TUDE approfondie de la nature est la source la plus

f^conde des decouvertes mathdmatiques.

Non seulement cette etude, en offrant aux recherches un but

determine, a I'avantage d'exclure les questions vagues et les

calculs sans issue ; elle est encore un moyen assur^ de former

I'Analyse elle-meme, et d'en ddcouvrir les dl^ments qu'il nous

importe le plus de connaitre et que cette science doit toujours

conserver.

Ces Elements fondamentaux sont ceux qui se reproduisent

dans tous les effets naturels." (Fourier.)

These words o£ Fourier are taken as the text of the present

treatise, which is addressed principally to the student of

Applied Mathematics, who will in general acquire his mathe-

matical equipment as he wants it for the solution of some

definite actual problem ; and it is in the interest of such

students that the following Applications of Elliptic Functions

have been brought together, to enable them to see how the

purely analytical formulas may be considered to arise in the

discussion of definite physical questions.

The Theory of Elliptic Functions, as developed by Abel

and Jacobi, beginning about 1826, although now nearly

seventy years old, has scarcely yet made its way into the
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ordinary curriculum of mathematical study in this country;

and is still considered too advanced to be introduced to the

student in elementary text-books.

In consequence of this omission, many of the most interest-

ing problems in Dynamics are left unfinished, because the

complete solution requires the use of the Elliptic Functions;

these could not be introduced without a long digression,

unless a considerable knowledge is presupposed of a course

of Pure Mathematics in this subject.

But by developing the Analysis as it is required for some

particular problem in hand, the student of Applied Mathe-

matics will obtain a working knowledge of the subject of

Elliptic Functions, such as he would probably never acquire

from a study of a treatise like Jacobi's Fundamenta Nova,

where the formulas are established and the subject is

developed in strictly logical order as a branch of Pure

Mathematical Analysis, without any digression on the

application of the formulas, or on the manner in which

they originate independently, as the expression of some

physical law.

In introducing these applications we are following, to some

extent, the plan of Durfege's excellent treatise on Elliptic

Functions (Leipsic, Teubner); and also of Halphen's Traite

des fonctions elliptiques et de leurs ai^plications (Paris,

1886-1891).

But while volume I. of Halphen's treatise is devoted entirely

to the establishment of the formulas and analytical properties

of the functions, and the applications are not discussed till

volume II. ; in the following pages it is proposed to develop

the formulas immediately from some definite physical or

geometrical problem; and the reader who wishes to follow

up the purely analytical development of the subject is referred

to such treatises as Abel's (Euvres, Jacobi's Fundamenta Nova
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already mentioned, or the Treatises on Elliptic Functions of

Cayley, Enneper, Konigsberger, H. Weber, etc.

The following works also may be mentioned as having been

consulted in the preparation of this work :

—

Legendre: Theorie des fonctions elliptiques ; 1825.

Thomse: Ahriss einer Theorie der complexen Functionen

und der Thetafunctionen einer Verdnderlichen ; 1873.

Schwarz: Formeln und Lehrsdtze zum Gebrauche der

elliptischen Functionen.

Klein (Morrice) : Lectures on the Icosahedron ; 1888.

Klein und Fricke ; Vorlesungen uber die Theorie der ellip-

tischen Modalfunctionen ; 1890.

Despeyrous et Darboux : Gours de m^canique ; 1886.

R. A. Roberts : Integral Calculus ; 1887.

Bjerknes : Niels Hendrik Abel; tableau de sa vie et de son

action scientifique ; 1885.

We shall begin by the discussion of the Problem of the

Simple Circular Pendulum, as the problem best calculated to

define the Elliptic Functions, and to give the student an idea

of their nature and importance.

Previously to the introduction of the Elliptic Functions,

the Circular Pendulum could only be treated by means of the

circular functions, by considering the oscillations as indefinitely

small, and by assimilating its motion to that of Huygens'

Cycloidal Pendulum, of 1673.

But now the employment of the Elliptic Functions renders

the ordinary discus.sion of the Cycloidal Pendulum antiquated

and of mere historical interest, and banishes from our treatises

such expressions as " an integral which cannot be found," or

"reducible to a matter of quadrature" in describing an elliptic

integral, expressions which aroused the indignation of Clifford

{Mathematical Papers, p. 562).
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According to the new regulations for the Mathematical

Tripos at Cambridge, to come into force in the examination

in May 1893, the schedule II. of Part I. includes " Elementary-

Elliptic Functions, excluding the Theta Functions and the

theory of Transformation " ; so it is to be hoped that this

reintroduction of Elliptic F\mctions into the ordinary mathe-

matical curriculum will cause the subject to receive more

general attention and study. These Applications have

been put together with the idea of covering this ground by

exhibiting their practical importance in Applied Mathematics,

and of securing the interest of the student, so that he may if

he wishes follow with interest the analytical treatises already

mentioned.

We begin with Abel's idea of the inversion of Legendre's

elliptic integral of the first kind, and employ Jacobi's notation,

with Gudermann's abbreviation, for a considerable extent at

the outset.

The more modern notation of Weierstrass is introduced

subsequently, and used in conjunction with the preceding

notation, and not to its exclusion; as it will be found that

sometimes one notation and sometimes the other is the more

suitable for the problem in hand.

At the same time explanation is given of the methods by

which a change from the one to the other notation can be

speedily carried out.

It has been considered sufficient in many places, for instance

in the reduction of the Integrals in Chapter II., to write

down the results without introducing the intermediate analysis

;

as the trained mathematical student to whom this book is

addressed will have no difficulty in supplying the connecting

steps, and this work will at the same time provide instructive

exercises in the subject ; and further, in the interest of such

students, many important problems have been introduced in
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the text, forming immediate applications of theorems already

developed previously.

I have to thank Mr. A. G. Hadcock for his assistance in

preparing the diagrams, and in drawing them carefully to

scale.

ERRATA.

Page 6.

42.

48.

64.

99.

107.

138.

158.

205.

213.

227.

282.

328.

Line 9 from bottom, read Huygens.

Line 6, read siu"\ /V x--(

Line 5 from bottom, read - 4M^(9e^+ 4)i^)^.

Line 19, read Fonctions elliptiques.

The diagram must be replaced by the one given below.

The Nodoid in fig. 12, p. 99, was described by a point

which was not a focus of the rolling hyperbola.

Line 2 from bottom, delete minus sign before radical.

Equation (7), read {c^ - c-^)jD.

Line 12, read Z&K{x, y).

Line 6 from bottom, read <p{u-v)- f(u+ v).

Line 7 from bottom, read Q + Lx' - X{yz' - y'r.) =

with the corresponding subsequent corrections.

Line 7, read P^J.-^ + Q^X.^ = 0.

Line 5 from top, for rectangle read ribbon.

Line 12 from bottom, read Proc. L. M. S., IX.
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CHAPTER I.

THE ELLIPTIC FUNCTIONS.

1. The Pendulum ; introducing Mliptic Functions into

Dynamics.

When a pendulum OP swings through a finite angle aboat

a horizontal axis 0, the determination of the motion introduces

the Elliptic Functions in such an elementary and straight-

forward manner, that we may take the elliptic functions as

defined by pendulum motion, and begin the investigation of

their use and theory by their application to this problem.

Denote by W the weight in lb. of the pendulum, and let

00= h (feet), where G is the centre of gravity ; let Wk^ denote

the moment of inertia of the pendulum about the horizontal

axis through G, so that W(h^+k^) is the moment of inertia

about the parallel axis through (fig. 1).

Then if 0(? makes with the vertical OA an angle 6 radians

at the time t seconds, reckoned from an instant at which the

pendulum was vertical ; and if we employ the absolute unit

of force, the poundal, and denote by g (32 celoes, roughly)

the acceleration of gravity, the equation of motion obtained

by taking moments about is

W{h^+k^)^= - Wgh sin 6,

since the impressed force of gravity is Wg poundals, acting

vertically through G ; so that

or, on putting h+k^/h= l,

^^=-S'sm0 (1)
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If the gravitation unit of force, the force of a pound, is

employed, then the equation of motion is written

-(h^+k^f^^ -Whsine,

reducing to (1) as before.

2. Producing OQ to P, so that OP=l, OP= ¥lh, the point

P is called the centre of oscillation (or of percussion) ; and I is

called the length of the simple equivalent pendulum, because

the point P oscillates on the circle AP in exactly the same

manner as a small plummet suspended by a fine thread from

(fig. 2); as is seen immediately by resolving tangentially

along the arc AP= s = lQ ; when the equation of motion of

the plummet is ^= —g sin9= — grsin
j,

or l{d^Q/clf)'= -g sin0;...i^..?.-:.:?r. (1)

and integrating, \l{dQjdty;= G.—g^ vers 6 (2)

These theorems are ' explained in treatises on Analytical

Mechanics, such as Routh's Rigid Dynamics, or Bartholomew

Price's Infinitesimal Calculus, vol. IV., and might have been

assumed here ; but now we proceed further, to the complete

integration of equation (2).

3. First suppose the pendulum to oscillate, the angle of

oscillation BOA +AOB' being denoted by 2a (fig. 2) ; the angle

of oscillation is purposely made large, as in early clocks, in the

Navez Ballistic Pendulum, in a swing, or as in ringing a

church bell, so as to emphasize the difierence from small

oscillations, the only case usually considered in the text-

books ; in fig. 2 the angle of oscillation is made 300°.

Then d6/dt= when 6= a, so that in equation (2)

G=g vers a

;

and now denoting g/l by n^, so that n is what Sir W. Thomson

calls the speed (angular) of the pendulum,

^{dQjdtY= n^(vers a— vers Q)

= '2.n\sm%a-sln^Q), (3)

since vers = 2 s\n%Q
;

deidt= 2nJ{sin^ a- sin^^Q),

and nt=f'. J^^ nf^,
W
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and (4) is called by Legendre an elUptio integral of the first

hind; it is not expressible by any of the algebraical, circular,

or hyperbolic functions of elementary mathematics.

4. To reduce this elliptic integral to the standard form con-

sidered by Legendre, we put

sinJ0 = sinJa sin <j>,

equivalent geometrically to denoting the angle ADQ by (j>

(fig. 2), where AQD is the circle on AD as diameter, touching

BE in D, and cutting the horizontal line PN in Q.

For, in the circle AP,
.4i\^=i vers = 2? single

;

and, in the circle AQ,

AN= IJ.-D vers 2<j>=AD sin^

= I vers a sm^(j> = 2,1 sin^^a sin^0.

Now sin^la— sin^|0= sin^^a cos^^,

and i9= sin -\sm^a sin 4>),

,1 , Tin sinia cos 0ci(A
so that 0,^6= ^, -21 2 ,v^(1 — sm^Ja sin''0)

and therefore '"'^= /-77^i ^-9?—^~F7\'

which is now an elliptic integral of the first kind, in the

standard form, employed by Legendre.

{Fonctions Elliptiques, t. I., chap VI.)

5. In Legendre's notation, sin|^a is replaced by k; the quantity

^(1— K^sin^0) is denoted by A^ or A(0, k); and the integral

yd<p/A<p ov f{l—K^svD?(j>y^d(f> is denoted by F(j) or F((p,K),

and called the elliptic integral of the first kind, <j> being called

the amplitude and k the modulus.

Thus, in the pendulum motion,

nt= F(f>, or F{<p, sinja).

Legendre employs c instead of k, and puts k= sin d (a dififerent

6 to what we have just employed) and calls 6 the modular
angle ; and he has tabulated the numerical values of F(^, k) for

every degree of (p and 0. (Fonctions Elliptiques, t. II. Table IX.)

Legendre spent a long life in investigating the properties of

the function F<p, the elliptic integral of the first kind ; but the

subject was revolutionised by the single remark of Abel (in
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1823), that F<}> is of the nature of an inverse function ; and that

if we put u = F^, then we should study the properties of (j>,

the amplitude, as a function of u, and not of u as a function

of ^, as carried out by Legendre in his Fonctions Elliptiques.

6. Jacobi proposed the notation (p = am u, or am(u, k) when

the modulus k is required to be put in evidence ; and now,

considered as functions of u, we have Jacobi's notation

cos = cos am u, sin = sin am u, A0 = A am u,

the three elliptic functions of u; and in Jacobi's Fundamenta
Nova (1829) the properties of these functions,

cos am u, sin am u, A am u.

are developed, the elegance of Jacobi's notation tending greatly

to the popularity of this treatise.

7. Definition of the Flliptic Functions.

Jacobi's notation is rather lengthy, so that nowadays, in

accordance with Gudermann's suggestion (Theorie der Modular

Functionen, Crelle, t. 18), cos am w is abbreviated to cnu,

sin am u to sn u, and A am u to dnu; and

en u, sn u, dn u

are the three elliptic functions (pronounced, according to Hal-

phen, with separate letters, as c, n, u ; s, n, w ; d, n, u) ; and they

are defined by

en u = cos 0, sn tt = sin 0, dn w= A0 = ^(1 — k^ sin^0)

;

where is a function of u, denoted by am u, and defined by

the relation

so that u=/^(l—K^sm^^)~id(j>;

^, dcnu d cos 6 .deb ,

and similarly

dsa.u d sin d(h ,—

=

=—=

—

J--= cos 0-7^= cnw-dnii:
diL du ^ du

ddau d^d> Ain cos cZ0 „

and —^—= ~T-^= w-,
—^j^=—Anucnw^ du du A0 du

u-
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8. Returning now with these definitions and this notation

to the motion of the pendulum, we have, on comparison,

u= nt, while /c= sin|a, so that the modular angle is ^a;

and K= AD/AB= AB/AE, k^=AD/AE (fig. 2)

;

also <p = a,mu, cos,(j> — Q,nu, sin ^ = Bn u, d^ldt=n(inu;

dO/dt=27iKcnu= 2 iik en nt,

sin|0= Ksnu— Ksnnt,

eos^O= dn tt= dn nt;

AP=AE sin ^0=AB sn nt, PE=AE cos ^9=AE dn nt

;

AN=AD sn^nt, KD=AD cn^nt, NE=AE dn%i

;

NQ=J{AN . ND) = ADsnntQ.Tint,NP-=ABsnntAn.nt;

giving these quantities as elliptic functions of u or nt.

9. We notice that k— for infinitely small oscillations of

the pendulum, the only case usually treated in the text-books

;

and now (p = u = nt, so that

en u= cos u, sn u= sin u, while dn u= 1

;

and the elliptic functions have degenerated into the ordinary

circular functions of Trigonometry.

But in finite oscillations of the pendulum, where k is not

zero, these new functions are required, which are called the

elliptic functions; and their geometrical definition is exhibited

in fig. 2, in a manner similar to that employed in Trigonometry

for the circular functions.

The name elliptic function is somewhat of a misnomer

;

but arose from the functions having been first approached by
mathematicians in their attempt at the rectification of the

ellipse (§ 77).

For finite oscillations the circular functions are applicable

only to cycloidal oscillations, as discovered by Huyghens, 1673,

whence the motion on the arc of a cycloid is generally investi-

gated at length in elementary treatises; but this discussion

may be considered as of mere antiquarian interest, now that we
are proceeding to discuss the finite oscillations of the pendulum
by the aid of the elliptic functions.

We may however make here a slight digression on cycloidal

oscillations, treated in the manner we have employed for

circular oscillations.
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10. Gycloidal Oscillations.

In the cycloid, fig. 4, the angle ADQ or (j) = nt (not ernint,

as in the circular pendulum) for all finite oscillations; for

as P oscillates on the arc BAB' of the inverted cycloid

described by the rolling of the circle AU, Q follows P at the

same level on the circle AD with constant velocity.

For if PQN' meets the circle on AE a,s diameter in R, then,

from a well-known, property of the cycloid, the tangent TP is

equal and parallel to AR, and half the arc AP ; and if n, p, q, r

denote simultaneous consecutive positions of W, P, Q, R,

the velocity of Q _-,,Qq _^f. Qq^
the velocity of P "" Pp

'

= cosec qQP smpPQ= cosec AFQ sin AER
_^ADAR_iAI) IAN.AE_ ^AD

Nn Pp

NQ AE AEyAN.ND J{AE.ND)-

Now the velocity of P= J{:lg . ND)
and therefore the velocity of Q= ^AD^(2g/AE)

= ADfJ(g/l)=n .AD, a constant,

if AE= ^l ; and therefore the angular velocity of Q about D
is n, and the angle ADQ= (j> = nt.

Therefore the oscillations are isochronous, since the period

2Tr/n= 2-7r,J{llg) is independent of the amplitude of oscillation.
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But in the circular pendulum the period increases with the

amplitude or angle of oscillation; because in the circle AP
(fig. 2) the versed sine AN varies as the square of the chord

AP, while in the cycloid AP (fig. 4) the versed sine ^if varies

as the square of the arc AP.
The time from P to J. on the cycloid is equal to the cm.

(circular measure) of the angle ADQ divided by n or s/{gjl) ;

and generally the time over any finite arc Pp of the cycloid

will be equal to the cm. of the corresponding angle QDq divided

by n, supposing the body to start from the level of D.

This will be true even when the point D is above E, as at

D', so that the body enters the cycloid with given velocity

;

as for instance in the case of a railway train entering with

given velocity V a cycloidal tunnel BAB' under a river.

Making BD'= ^V^Ig, the impetus of the velocity V, then

the time occupied by the train in the tunnel from B to B' is

twice the cm. of AUG divided by n.

Also if the length of the tunnel is 2s, then s= ^(2ZA.), if

AD, the depth or versed sine of the tunnel, is A ; so that the

time occupied is

^tan-gg,=2^itan-y^,=-^^tan-i^/(^).

11. The Period oj the Pendulum, and of the Elliptic

Functions.

The period of the pendulum is the name now given to

the time of a double swing, according to the report of a Com-
mittee at the Conference of Electricians in Paris, 1889

;

thus, if the swing is small, the period is 2Tr^{l/g) seconds.

But if the angle of vibration 2a is finite, the period is in-

creased ; denoting the period by T, and therefore the quarter-

period, or time of motion of P from A to B (fig. 2) by ^T,

then as t increases from to IT, 6 increases from to a, and
from to ^TT, so that nt or u increases from to K, where (§ 4)

K=/{l-K^s,m^)-id(j>;

and K (or F'^k in Legendre's notation, and called by him the

complete elliptic integral of the first kind) is now called the

real quarter period of the elliptic functions, to the modulus k.
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Now, expanding by the Binomial Theorem,

(1 -^«sinV)-^= 1 +^fl[l[lZ^''l~^
^~ 'c^"(sin ^r,

and, by Wallis's Theorem,

H"- „ ,
1.3.0. ..(2)1-1),

.that .-.wQ^2{-|-;a-£l)}V].

Thus the period of a pendulum of length I, oscillating through

an angle 2a, is

+{i^y^''^i'^^'+'

As a first approximation therefore in the correction for am-

plitude of swing, the period must be increased by the fraction

J(sin |a)^ of itself, or by 100(J chord of a)^ per cent.

Thus a pendulum, which beats seconds when swinging

through an angle of 6°, will lose 11 to 12 seconds a day

if made to swing through 8°, and 26 seconds a day if made to

swing through 10°. (Simpson's Fluxions, § 464.)

The value of K or /''V has been tabulated by Legendre

for every degree and tenth of a degree in the modular angle

{Fonctio7is EUiptiques, t. II., Table I.).

We denote the modular angle by ha, and put /c= sin|a;

while cosja is denoted by k and called the complementary

modulus, so that

and then F^k is denoted by E', and called the complementary

quarter period.

The following table (from Bertrand's Calcul Integral, p. 714),

gives the logarithms of the quarter periods^ and ^'.correspond-

ingtoeveryhalf degree in |a, the quarter angle of swing; and then

2^-/c'= sin a, «:= sin^a, A:'= cosJa,

and ia is the modular angle.

The modular angle in the Table is given from to 45° ; to

determine Kiov a modular angle greater than 45°, we look

out the value of K' corresponding to the complementary modu-

lar angle.
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12. We notice that when the modular angle is 15°, then

log ir7i2'= -2385606 = 1 log 3, so that K'/K=^3:
this will be proved subsequently ; but it shows here that the

period of a pendulum oscillating through 300° is ^3 times the

period when the pendulum oscillates through 60°.

Again we shall prove subsequently that,

if K'/K= ^7, then 2kk'= ^;

so that equal parallel horizontal chords, BB' the higher, and

bb' the lower, each of length one-eighth the diameter, cut off

arcs of the circle below them, which would be swung through

by the pendulum in times which are in the ratio of ^7 to 1.

Many other similar numerical examples can be constructed

when the Theory of the Complex Multiplication of Elliptic

Functions is studied.

13. When a = ^-7r, the pendulum drops from a horizontal

position and swings through two right angles, as in the Navez
Electro-Ballistic Pendulum; and now ^=^', and the modular

angle is \ir.

Table II. from Legendre's Fonctions Elliptiques, t. II., gives

to five decimals the value of u=F^ for every half degree in

the value of <p, when the modular angle is 45° ; and thence by
means of the preceding formulas which determine the motion

of the pendulum by elliptic functions, the pendulum can be

graduated so as to measure small intervals of time At= Au/n,

as required for electro-ballistic experiments.

Then from Table II., when K=K', and k=k=\J2,
en w= cos ^, sn u = sin 0, dn u = ^(1 — ^ sin^^).

14. Generally in the pendulum, K=\nT, so that the period

T=4^K/n= 4^KJ{l/g).

When /c= 0, K=lTr, and the period is 2Tr^(l/g), as proved

otherwise in the ordinary elementary treatises, for small

oscillations of the pendulum.

But in the finite oscillations of the pendulum, with

u= nt= 'iKt/T,

then (§ 8) cl6/dt= iuK en '^KtjT,

sini0= Ksn4<Kt/T,

cosJ0= dn4<Kt/T,etc.

Putting ^= 0, u= 0, we find

cnO = l,snO = 0, dnO=l;
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and putting t=lT,u= K, (j)=l-7r,

when the pendulum has swung to OB,

cnir=cos|7r= 0, snir=l, An.K=K'

;

while putting t = \T, u = 2K,

when the pendulum is swinging backwards through the verti-

cal 0^, cn2Z'=-l, sn2Z= 0, dn2ir=l;
analogous to the values of cos0 and sin 0, for = 0, lir, tt;

so that 2K is the half period of the elliptic functions, corre-

sponding to the half period tt of the circular functions.

d<pll^<^ = Id<i,lb>.<^±ld<l>lb>.(^ = 2K±u, if =amu,000
therefore am(2^±«)= 7r±0= 7r±amtt;

and generally am(2m7£'± u) = m-Tr±^ = rmr±am u
;

so that cn(2m^±u) = cos(mTr±am tt)= ( — l)™cnw,

sn(2m^±w,) = sin(m7r±am u)=±{ — l)'"sn w,

while dn(2m^± it) = dn m
;

analogous to cos(mx±0)= (— l)™cos0,

sin(m7r±0) = ±(- l)™sin ;

and representing the motion, m half periods, past or future.

15. The degenerate Circular and Hyperbolic Functions.

As a increases from to tt, k increases from to 1, and K
from ^TT to infinity; the pendulum has now, with k=1, just

sufficient velocity to carry it to the highest position, and this

will take an infinite time.

For with a = tt, equation (3), page 3, becomes

i (de/dty= n%l + cos e) = 2'/i2 eos^e

;

nt = h%ciedhe

= log tan:|(7r-|-0) = log(sec^0-|-tan|0),

which is infinite when = tt.

In small oscillations the period is ^.Trjn, and the motion of

M, the projection of P on the horizontal axis Ax, is then a

Simple Harmonic Motion (s.h.m.) given by the differential

equation -^+n'^x= 0,

the solution of which is

x= A cos nt, or B sin nt, or A cos nt+B sin nt, or acos(nt+e)
;

so that n is the constant angular velocity round D of the point

Q on the infinitesimal circle AQI), as in the cycloid.
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In Kepler's Problem in Astronomy, n represents what is

called the mean motion of a planet or satellite, and nt or nt+e

the Tnean anomaly ; a satellite of Jupiter, when observed in

the plane of its orbit, supposed circular, will appear to move

with a s. H. M.

But with /c= l, putting ^0 =0= angle AEP (fig. 3)

nt= /sec (pd(f) = log(sec 0+tan (p),

so that sec +tan = e'"-\

sec ^— tan ^ = e""',

sec ^ = Ke"*+ e - "')= cosh nt,

tan ^= Ke'"'— e - "') = sinh nt,

sin ^= tanh nt, cos = sech nt,

tanj^i = tanhjni, and so on.

Also dO/dt= 2?i cosJ0 = 2n sech nt

;

so that if the angular velocity of the pendulum in the lowest

position OA is 2n, the pendulum will just reach the highest

position OE ; but the time occupied in reaching it will be in-

finite, since = tt, ^ = Jtt makes nt and therefore t infinite.

The velocity of P in any position is

l{de/dt) = 2nl cos^e= n.EP,
and therefore varies as EP.

If EP in fig. 3 is produced to meet Ax in M', then

AM'=AE tanje= U sinh nt, EM'=EA sec|0= 21 cosh nt

;

so that, if AM' or EM' is denoted by x,

-^,-n-x= 0,

the general solution of which differential equation is

x=A cosh nt+B sinh nt.

16. When the pendulum just reaches the highest position

OE, K = l; and u (or nt) and ^, the cm. of the angle AEP,
are connected by the relations

u=y sec <pd(j) = log (sec + tan 0)

= cosh " ^sec = sinh " ^tan <p = tanh " ^sin ^ = 2 tanh ~ Hsm^tp.

Conversely

= cos ~^sech u= sin " ^tanh u= tan ~ ^sinh u= 2 tan " ^tanh ^u

;

and then <p is called by Professor Cayley the Giidermannian
of tt, and denoted by gdu; so that if <p= gdu, then

M = gd -i0 = log (sec + tan 0)= cosh " ^sec </>, etc.
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Hoiiel proposes for <p the name of hyperbolic amplitude of

u, with the notation tp = amh u, instead of gd u ; so that

f"amh u

u = /sec ^d(l> ;

or =amhu= /sech w,cZu= cos"^sechu= sin"Hanhu, etc;

analogous in the general case of the elliptic functions, for any

modulus K, to (§ 7)

F~hL = a,m.u= / dn udu= cos~^cnu= sin'^sn^w, etc.

As degenerate forms, when k=1,

cnu= sech u, sn lo— tanh u, dn u= sech u
;

while, with k= 0,

en M = cosu, snu = sint(., dntt= 1.

Thus, when /c= l, the elliptic functions degenerate into the

hyperbolic functions ; and, when a:= 0, into the circular func-

tions ; but with any other value of the modulus k, the elliptic

functions must be considered as new functions, of a higher

order of complexity than the circular or hyperbolic functions.

The following Table, from Legendre, F. E., t. II., Table IV.,

ffives the values of

u= log (sec + tan 0) = log tan(i7r+ l(j>)

for every degree of <p radians ; whence the numerical values of

the hyperbolic functions of u can be determined, by aid of a

table of circular functions, and by the relations

cosh u= sec 0, sinh u= tan 0, tanh u= sin 0, . . .

.

For values of u greater than about 4 the Table fails ; but

then it is sufficient, to two decimals, to take

cosh V,= sinh u= ie"

;

logiocosh u= logiosinh u=Mu— log 2 ;

or, to a closer approximation,

logioCosh u= Mu-\og2+Me-^", ...,

logiosinh 'M,=i/u-log 2 -ilfe-2« . . .,

logiotanhu= -2ilfe-2« ...,

M denoting the modulus logigfi.

(Proposed Tables of Hyperbolic Functions, Report to the

British Association, 1888, by Prof. Alfred Lodge.)
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TABLE III.
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Considered as a function of the latitude (j>, u was called the

meridional part by Edward Wright, 1599, who first employed
it for the accurate construction of the parallels of latitude on
the Mercator Chart, by making the ratio of the distance from
the equator of the parallel of latitude

<f>
to the distance between

the meridians whose difierence of longitude is ^ equal to the

ratio of u/(p (§ 98).

17. Eeturning to the general elliptic functions, we notice

that cn%+ sn%= l,

dn%+(c%n^u= l,

dn\(-— K^n^u = k'^ ;

or, in a tabular form,
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18. Pendulum 'performing complete revolutions.

Secondly, suppose the pendulum performs complete revolu-

tions (fig. 3).

We have seen previously (§ 15) that if the pendulum has

an angular velocity 2n = 2^{gll) in the lowest position, it

will just reach the . highest position ; and therefore if this

angular velocity is increased, the pendulum will perform com-

plete revolutions.

The integration of equation (1) in the form

ll\deidtf= G-gl^&xse

or \v^lg+AN=AD, a constant, denoted by 2i2,

shows that the velocity of P is that which would be acquired

in falling freely from the level of a certain horizontal line

BDB', which now does not cut the circle, as in fig. 2 when the

pendulum oscillated, but lies entirely above the circle, as in

fig. 3, at a height 2R above the lowest point A ; and the im-

petus of the velocity of P is the depth of P below BB'.

Denoting the angle AEP by ^, so that <p = ^0, then

2l\d<p/dty= g(2R- 1 vers 2^) = 2g{R-l sin^gi),

or (§)'=f04i°V) =5l-^sinV),

on putting k^= l/R=AEjAD ; and n^= gjl, as before

;

so that ntJK =/{! — k^ sin29!>) - id,p= F{<j>, k),

in Legendre's notation ; and inverting the function according

to Abel's suggestion, with Jacobi's notation,

^6= (p= Bi,m(nt/K,K);

and now, with Gudermann's abbreviated notation,

cos ^6= CO. ntJK,

sin J0= sn ntJK,

^^^2-dnnt/.,

AN= I vers = 21 sin^^ = AEsn^nt/K,

NE^AEQuHtJK, ND= ADAix^ntlK,

AP=AE sn ntiK, PE=AE en nt/K,

iVP= 2? sinp cos J0 =AE sn nt/K en ntJK.
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19. The time of moving from J. to ^ is obtained by putting

<!> — \-iT, and is therefore KkJu ; and therefore the period, or

time of a complete revolution, is 2KK/n (not '^KKJn).

With the series for K as given in § 11, and with k^= 1/R,

the period of the pendulum for a complete revolution is

The analogous expression for the period when the pendulum
oscillates, rising on each side to a height 2R, less than 21, is,

as in § 11,

Putting K=l, and Ii= l, makes K infinite, and brings us back

again to the separating case between oscillations and complete

revolutions of the pendulum ; and we thus regain for this

case the original expressions involving hyperbolic functions,

previously investigated in § 15.

But as K now diminishes again from 1 to 0, the pendulum

revolves faster and faster, until finally, when k= 0, we must

suppose the pendulum to revolve with infinite angular velocity,

the fluctuations of which for different positions of P are in-

sensible ; and the period is now zero.

20. We notice that, in the circle AQ (fig. 2) the point Q
moves according to the law

^=am nt,

so that Q moves round in a circle, centre C, in fig. 2 like the

point P making complete revolutions in fig. 3.

But now, in the motion of Q, gravity must be supposed

diluted from g to K*g ; for if R or kH denotes the radius of the

circle AQ, g' the diluted value of gravity, and n'= iJ{g'IR) the

speed of the pendulum CQ, then we must have

(j>=am nt= am n'tiK,

so that n'=Kn,

g/R=K^gll.

g'/g= K'B/l=K'-

We may dilute gravity in the circle ^Q by inclining the

plane of the circle to the vertical at an appropriate angle.
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21. Another way of diluting gravity would be to replace the

circle AQ hy a, tine tube in the form of a uniform helix with

horizontal axis through its centre G perpendicular to the plane

of the circle AQ, and to suppose the particle Q to move in this

helix under gravity.

Then we shall find that if the length of one complete turn

of this helical tube is equal to the circumference of the circle

AP, the particle Q moving with velocity due to the level of E
will follow the motion of the particle P moving on the circle

AP with velocity due to the level of B, so that PQ will always

be horizontal, if once it is horizontal, and P, Q will always be

at the same level during the motion.

For in this case the mechanical similitude is secured by in-

creasing the square of the velocity of Q in the ratio of 1 to

1//C*, instead of diluting gravity to k'^q.

We may secure the same effect by supposing Q to be a point

on a pendulum OQ', of length greater than CQ ; or else of length

GQ, but of which the axis G is cut into a smooth screw of

appropriate pitch ; or else engaging with teethed wheels, so as

to increase the angular inertia about C.

22. If we produce GQ to any fixed distance GQ'= l', then Q'

will also perform complete revolutions like a pendulum of

length I', with gravity changed in a certain fixed ratio depend-

ing on V ; and we can keep gravity unchanged by choosing I'

so that n"^= gll'= K^']n?= K^gll,

or I'= 1/k^= I cosec^^a

;

and now Q' revolves with velocity due to a level at a height

2Z//c*= 2Zcosec*^a above its lowest position; so that the period of

revolution of a simple pendulum of length Zcosec^^a, when the

velocity is due to the level of a line at a height 2lcosec^a above

its lowest point is equal to the time of oscillation of a simple

pendulum of length I through an angle 2a from rest to rest.

These problems on the pendulum have been developed here

at some length, in accordance with the idea of this Treatise,

that it is simple pendulum motion which affords the best

concrete illustration of the Elliptic Functions.

Similar principles are involved in the following three

theorems, which the student can prove as an exercise in the

manner employed for the cycloid in § 10.
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1. If two vertical circles, of diameters AD and AE, touch at

their lowest points A, the time of oscillation from rest to rest

of a particle in the circle AE with velocity due to the level

of D will be to the time of revolution of a particle in the

circle AD with velocity due to the level of E in the ratio of

AE to AD (fig. 2).

2. Two particles move, under gravity, in vertical circles.

The one oscillates ; the other performs complete revolutions.

Prove that if the height to which the velocity of the first is due

bears to the diameter of the first circle the same ratio as the

diameter of the second circle bears to the height to which the

velocity in it is due (the heights being measured from the low-

est points of the circles) the ratio of the squares of the times

in corresponding small arcs—and therefore the squares of the

whole times of oscillation and revolution—will be that com-

pounded of either of the before-mentioned equal ratios and

the ratio of the diameters of the circles.

3. Two equal smooth circles are fixed so as to touch the same

horizontal plane, their planes being at different inclinations

;

two small heavy beads are projected at the same instant along

these circles from their lowest points, the velocity of each bead

being that due to the height of the highest point of the other

circle above the horizontal plane, show that during the motion

the two beads will always be at equal heights above the hori-

zontal plane.

23. We have compared the motion of the pendulum in Hg. 1

with that of the simple equivalent pendulum composed of

the particle P moving on a smooth circle, or at the end of a

fine thread or wire OP ; oscillating from B to B' in fig. 2, and

performing complete revolutions in fig. 3, the velocity of P at

any point being that acquired in falling^from the level of D.

Taking as coordinate axes the horizontal and vertical axes

Ax and Ay through A, and referring the motion of P to the

coordinates x and y, then since P describes the circle AP of

radius Z, x^=2ly-y^.

Denoting hjv= ds/dt the velocity of P, then by the principle

of energy ^v^g= 2R-y,
2R denoting the height of D above A.
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Tj , . dx l-y
iiut Since -T-= ,,ai 2T'dy J{ny-y^)

ds^ ,,d^_ V'
.

dy' ^'^dy^ 2ly-y^'

while ^(dsjdtf=g(2R- y)

;

so that il\dyldtf=g(2R-y)(2ly-y^),

dt I 1

dy~J{2g) V{(2^-2/X%-2/')}'
I n dy

called an elliptic integral in y, and of the first hind.

24. Firstly, if the pendulum oscillates, R is less than I, and

y oscillates between and 2R ; and the integral is reduced to

Legendre's canonical form by putting y = 2R sin^0 ; when

nt =/(l - K^ &wP-<t>)-U4,= F{4,, k),

where k^= Rjl, n^= gjl

;

and therefore with Jacobi's and Gudermann's notation,

(j> = a.Ta{nt, k)

and y= 2R sn^nt= 21k^ sn^nt, x= 21k sn ntdant;

or AN^AB snHt, ND=AD cn^nt, NE^AEdca^nt,

as before, in § 8.

2-5. When /c= 0, the oscillations are indefinitely small;

and now y= 2R su^nt,

where i? is a very small quantity

;

an ordinary circular integral.

It was Abel who pointed out (about 1823) that in looking

only at the Elliptic Integrals, mathematicians had been taking

the same difiicult point of view as if they had begun to deduce

the theorems of elementary Trigonometry from an examination

of the properties of the inverse circular functions, as deduced

from the circular integrals.

{Niels-Henrik Abel. Tableau de sa vie et de son action

scientifique. Par C. A. Bjerknes. 1885.)
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26. Secondly, if the pendulum performs complete revolu-

tions, as in fig. 3, R is greater than I, and y oscillates in value

between and 21 ; we now reduce the elliptic integral in § 23

to Legendre's standard form by putting y = 2l sin^0,

when ntJK =/(l - k^ sin^^) - id<p= F{(f,, k)

where /c^= Z/ii,

the reciprocal of its former expression ; and now

(f>
= &Ta(nt/K, k), y= 2l sn^nt/K, x= 2lsn ntJK en ntJK

;

or AN=AEsn^ntJK, NE:=AEcn?nt/K, ND=AB dnhitJK,

as proved before, in § 18.

27. In the separating case between oscillations and complete

revolutions, B= l, and now k=1;
and y = 2l sin^^ = I vers2<p = ^vers 6

;

also (§ 23) nt=^ec ^d<j) = log(sec <p+ tan <p)

= cosh ~ ^sec <p = sinh ~ ^tan = tanh " ^sin = 2 tanh ""Han^0

;

so that (p = gdnt, or amh nt,

and sec = cosh nt, tan = sinh nt, sin = tanh nt,

y = 2l tanh^nt, x= 2l sech nt tanh nt,

as before, in § 15.

28. Landen's Point.

With centre E in fig. 2 and radius EB describe a circle

cutting the vertical AE in L; then L is an important point in

the theory of pendulum motion and elliptic functions, called

Landen's point.

Since EB^=ED.EA=EG^- OA^
therefore the circle, centre E and radius EB, will cut the circle

AQB, centre C, at right angles ; and

LQ'^LG^+GQ'+2LG.CN=2LG.EN=21{\-kJEN;
since LG^+GQ^=LG^+EG^-EL^= 2LG . EG,

and EL=EB = 21k', EG=1{1+k^), LG=l{\-K'f.

Now, by § 20, the velocity of Q
= J{2g' . EN) = J{2gK^ . EN) = nK^J{2l . EN)
= n.LQ{\+K').

Similarly in fig. 3, where P makes complete revolutions, the

velocity of P= n.LP(l+K')/K, where the Landen point L is

obtained by drawing a circle with centre D, cutting the circle

J.^ orthogonally, and the vertical AD in L.
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We shall prove subsequently that any straight line through

L divides the circle APE in fig. 3 (or the circle AQD in fig. 2)

into two parts, each described in half the period.

29. Change from one vnodulus to its reciprocal.

It is important for the simplicity and for convenience of

tabulation of the elliptic functions that the modulus k should

not exceed unity ; but the preceding reductions of the motion

of the pendulum to elliptic functions, in the two cases in which

the pendulum oscillates and performs complete revolutions,

show us how to make the elliptic functions to a modulus k,

which is greater than unity, depend on the elliptic functions

to the reciprocal modulus 1/k, which is less than unity.

For, on comparing the two expressions for y, according as

the pendulum oscillates or performs complete revolutions,

y = 2R sn\nt, k), or 21 sn^/c^i, l//c),

where k^= R/1;

so that Khn^{nt, k) = sn^Ktit, 1/k) ;

or, putting nt= u,

K sn(tt, k) — sn {ku, 1/k),

so that dn(w, k) = en {ku, 1/k),

cn(u, /c) = dn (ku, 1/k).

Independently, if we suppose <p= arQ(M,, k), and if we put

K sin <p = sin yp-,

then K cos <f)d^ = cos \fr d\p;

and cos<p= jJ(l—K- ^sin^i/r) = A(i/r, 1/k),

cos yj^= ^(1 - Khm^<p) = A(^, k)
;

so that u= /(l—Khin^<p)-id^^/sec i/r d^
;

KU =JsQC </> dyjr =/(l - a:
-%inV)"*(^V'.

or i/^= am(/cu, 1/k) ;

and since k sin
<f>
= sin \fr, etc.,

therefore k sn(w, k) = sn(/cu,, 1/k), etc.

When u= K, <p = l7r, and \p-= sin-'^K; so that, if k is less

/sin"'K
{l—K-hin^\p-)-H\jr.
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30. Rectilinear Oscillations expressed by Elliptic Functions.

In simple pendulum motion, referred to horizontal and ver-

tical axes Ax, Ay, drawn through the lowest point A, we have

shown in §§ 24, 26, that

y= 2lKhn^nt, x= 21k sn ntdnnt;

or y = -lIsn-ntlK, x— 2lsn ntJK en ntJK ;

according as the pendulum oscillates or performs complete

revolutions.

Treating the vertical motions separately, and differentiating

according to the rules established in § 7, we find, on taking

2/= 2?/c%n%i,

dyldt=4ilnKhn nt en nt dn nt

d'hjjdt^= 4<lnV{cii^nt dn^nt— sn^nt dn^n t— i^sn^nt cn^nt)

=*'*{(-J?)(i-S)-*(i-|)-|(i-i--)}

,i,„v(l-f-^,+^),bygl7.

Taking y — 2lsn^nt/K, we find in a similar manner

d^_iln^f y K-y 2^y\
.

di2- ^2 V I I
-^

U^ J'

both immediately obtainable from the equation of § 23,

il\dy/dtf=gi2R-y)i2ly-y^)

whence l\dhjldt^) = ^giRl-By-ly+ly"-).

"We shall find similar expressions for dhjjdfi when y varies

as cxxhit or di^nt, all of the form

d^yjdt''=A+By+Uy\

Let us determine then, as exercises in the differentiation of

the elliptic functions, the acceleration d^xjdt^, and thence the

force at a distance x, which will make a body oscillate in a

straight line according to one of the laws

a;= a en nt, sn nt, dn nt, tn nt, nc nt, nsnt, ....

Taking x= acnnt,

dxjdt= — na sn mi dn nt

d^xjdt^= — n^a(cn nt dnhit— Khnhit en nt)

= -n^x(K'^-K'+2K^'^,
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SO that ~+n^x= 2n\^x(l -^)

;

reducing to zero when k= 0.

It is often simpler to find dx/dt, and then to express ^{dxjdtY

as a function of x ; and then a differentiation with respect to t

will give d^x/dt^ immediately as a function of x.

Thus, if a;= a sn nt,

dx/dt=na en nt dn nt

i(l)'=*«'4-3(i-?)'

so that -^r^ = —n\l +k')x-\ 5—

.

dt^
'

a?

d'^x
, „ „ „/ 2a?\

reducing to zero, when /c = 0.

Similarly, if a;= ct dn nt.

Generally, when x varies also as tn nt, ncnt, ... , we shall

find a relation of the form

d^xjdf= fj.x+ 2vx^,

which, when multiplied by dx/dt and integrated, gives

l{dx/dtf= C+ yx"+ i|^*

or dxjdt^JCi.G+ij.x^+vx^),

t=/{2C+ij.x^+ vx^)-idx,

an elliptic integral, of which the different expressions are given

in Chapter II.

31. A Special Minimum Surface.

Another interesting exercise in the differentiation of elliptic

functions is to verify that the surface discovered by Schwarz

{Oesammelte Mathematische Abhandlungen, vol. I., p. 77),

cna;+ cn2/+ cn3+ cna; cny cn2r= 0,

with the modulus k = ^, is a ininimum surface, having zero

curvature at every point, and therefore satisfying the condition

(1 + q^)r- 2pqs+ (1 +p^)t= 0,

p, q, r, s, t having their usual meaning as partial differential

coefficients of z with respect to x and y.
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Schwarz shows that this condition is equivalent to

p^, p2 denoting the principal radii of curvature of the surface

(0. Smith, Solid Geometry, § 255), where

x/CpHsHi)' ^ VCpHsHi/
Let us write c^, s^, d^, for en x, sn a;, dn cc ; and c^, s^, d^, c^, Sj,

dj for the same functions of y and z.

Then Cj+ 63+ 03+0^0203=0;

and differentiating with respect to x,

— s^d^— Sgd^p— Sjdj^OgOj

—

CjC^^d^p= 0,

or p= —
83(^3(1+0102)

But 03= -^i±^:

,2_1 o (l+Ci02)^-(0i+ C2)-^ _
=B-- -^3- (1+0,02)2 (l+ CiC2)2'

so that 83(1 + O1C2) = SjS^, etc.

;

S^SgC^g S^cZg (^3/83 Si/dj'

By symmetry, g= -^

,

so that we may write

x=

where D= (cZi/Si)^

+

{d^s^r+ (^s/ss)'

;

3X fcA^ c,d,^+c,dA
. 7)1

By symmetry

3^-Vs,V «2V ^" '

so that^ + :5-=0, provided that
dx ay
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c^dj^c^d^ c^d^^c^dj c^d^-^c^d^_^
72^^ f D 2o 2 "f o 2„ 2

"'

or Glsid^^-sidi)^-...^^;

or, since s^= \- c^, d^= i(.3+ c^^),

c,{{l- c,Y{^ +oi) + {l- ci){Z+ c,^)} + . . . = 0,

or {c^+c^+ c^+ C1C2C3) (3 - C2C3- C3C1- C1C2) = 0,

and this is true, in consequence of the original relation

The other relation 3 — C2C3— CgC^— c^c^ =
represents isolated conjugate points, where

Another minimum surface is

tn y tns+ tns tnx+ tna: tn 2/+ 3 = 0,

with K= %^i, ic'= \.

32. Elliptic Function Solution of Euler's Equations of

Motion.

Before leaving the mechanical interpretation of elliptic

functions, we may just mention here an important application,

the, application to the solution of Euler's equations of motion,

for a body under no forces, moving about its centre of gravity,

or about any fixed point.

Euler's equations for p, q, r, the component angular velocities

about the principal axes, are (Kouth, Rigid Dynamics)

Adpjdt= {B-(J)qr,

Bdqldt= {G-A)rp,

Cdr/dt= (A-B)pq;
where A, B, G denote the moments of inertia about the princi-

pal axes ; and two first integrals of these equations are ,

Ap^+Bq^+Gr^=T, a constant

;

A^p'^+B\^+ Gh'^=G^, a constant,

obtained by multiplying Euler's equations respectively by (i.)

p, q, r, and adding, (ii.) by Ap, Bq, Gr, and adding ; and then

integrating.

Comparing these equations with the equations of § 7,

cn% = — sn u dn u, sn'ti = en n dn u, dn'u= — /c^sn u en u,

where accents denote differentiation with respect to u, we
notice that if A> B>G, and the polhode includes the axis G,

so that AT>BT>G^>CT, we may put u= nt, and
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p = Pcnu, q=-Qsnu, T= Rdiiu;
and then, on substituting in Euler's equations of motion,

B-GjnP A-C_nQ A-B_K^nE
A QE' B -RP' ~G~-~PQ-

Putting f= 0, and therefore
f>
= P, q= 0,T= E; then

AP^+CE''= T, A^P^+ Gm^= G^,

so that
p._G^-Or

ji._
^T-G\

A(A-Gy ^ G(A-G)'

and then Q.=p.|^=|^;
while

^,^j^,(A-G)(B-G)JAT-G^)(B-G)
AB ABG

. ,_P' A A-B_ G'-GT A-B
'^~B' G B-G~AT-G^T^^-

If the polhode encloses the axis of greatest moment A, so

that AT>0^>BT>GT, we must put

^ =P dn 16, g = — Q sn u, ?'= i2 en w

;

and then determine P, Q, E, n, k as before ; when

^_ {G^-GT){A-B) ,_AT-G^ B-G
ABG ' " ~ G^-GT A-S

In the separating case, when G^= BT, then k = 1, and

p =P sech nt, q= —Q tanh nt,r=E sech nt

;

so that, when t= Q,

^_G^B-C _ ,_ G^ A-B
^ ~ABA-G'^~ ''' ~BGA-G'

and initially or finally, when t=+oo,

p= 0, q=±G/B, r= 0;

and the body is spinning about its mean axis B.

But when the body is spinning about the axis of greatest or

least moment, (?2=^r=^V> or G^=GT=G^r\a.ndK= Q; and

the period of a small oscillation is 2Tr/n, where

_ {A-B){A-G) (A-B)(A-G)
~ ABG BG ^

'

(A-G)(B-G) (A-G)iB-G)^~ ABG AB
We shall return subsequently to these equations in Chap. III.



CHAPTER II.

THE ELLIPTIC INTEGEALS (OF THE FIEST KIND).

33. In Chapter I. we have immediately made use of Abel's

valuable idea of the Inversion of the Elliptic Integral, which

is the foundation of the modern theory of the Mliptic Func-

tions ; and we have considered the functions which are inverse

to the elliptic integral, and treated them as the direct funda-

mental functions of our Theory.

Previously to Abel's discovery (1823) it was the elliptic

integral which was studied, as in the writings of Euler and

Legendre ; and, in fact, in a physical and dynamical problem

it is the elliptic integral which arises in the course of the

work ; for instance in the form of the Equation of Energy,

i(dx/dty= X, so that ^2 t=fdx\JX;

and now, when X is a cubic or quartic function of x, so that

d?xldt''' is a quadratic or cubic, as in § 30, the integral is called

an elliptic integral of the first kind ; and we have to follow

Abel and determine the elliptic function which expresses x as

a function of t.

To accomplish this, it will be useful to employ the notation

of the inverse functions, given by Clifford {Proa. London
Math. Society, vol. vii., p. 29 ; Mathematical Papers, p. 207)

analogous to those used in Trigonometry for the inverse

circular functions; and to make a collection of all the important

cases that can occur.

34. The Circular and Hyperbolic Integrals.

Starting with the circular functions, sin x, cos x, tan x, cot x,

... ,we have, in the ordinary notation,
30
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dx
;7(Tz:^)=«^^'''^=^os"V(i -a=')./—. =Hi-n -lo? ^
^

y^i^^= cos-V,= sm-V(l-x-^),
a;

/ '^ dx
^ , , J

2 =tan~ia3= cot"^-,

/ 2_i_i =cot~^a; = tan" -, etc.

We can employ a similar notation with tbe hyperbolic func-
tions, cosh X, sinh x, tanh x, coth cc, . .

.
, and write

-^^Y^|j^
= sinh-ia; = cosh-V(l+a;2) = log{V'(l+a;2)+a;},

/^ diC 1 -I- T
y—^ =tanh-ia; = |logj—^(a;<l),

^—J =coth-ia3= Jlog^—^ (a;>l); etc.;

and the analogy with the circular functions is now complete,

and the results can be more easily remembered and written

down, than when the logarithmic function alone is employed.

To avoid complications due to the multiplicity of the

values of these and subsequent integrals, in consequence of the

variable x assuming complex values and performing circuits of

contours round the poles of the integral, we suppose for the

present that x is real, and increases or diminishes continually,

so as to assume all real values once only between the limits of

integration; also that the positive sign is taken with the

radical under the sign of integration ; we thus obtain what is

called the principal value of the integral or inverse function.

35. The Elliptic Integrals.

With the elliptic functions, sn u, en u, dn u, we have (§ 7)

dsnu , dcnu , ddnu—5—= en tt dn u, —-,— = —snuanu, —j

—

du du du
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and cn%= l — sn%, dn^u= l— K^sn%;

so that, if x= snu, then cnu=^(l— a;^), dn'ti= ^(l— A^)

;

''"''- = J{1-x^.1-kV),
du

and /—TT^i s-^i 9-3T= tt= sn-ia;, or sn-¥a;, k), (1)

when the modulus k is required to be put in evidence.

Putting x= l makes the integral equal to K, the quarter

period corresponding to the modulus /c (§ 11).

Similarly, with

a;= en u, then sn m= ^(1 — x^), dn u= y/(K^

+

kV),

$ = -snudnu= -jn -x" . k'^+ kV),
du

yri
fly.

-^^^__^—,^-j-^= tt= cn-ia;, or cn-^a;, k), (2)

X

so that the integral is K when the lower limit is 0.

Again, with

a;= dn u, then ksd.u= ^(1 — x^), Kcnu= ^{x^— k'^) ;

and -^ = —K^siiucnu= —fJil—x^.x^— K^),
du ^

X

We may also put x= tnu, using Gudermann's abbreviation

of tn u for tan am u ; and now

^ =^= ^(1+ccM + ,c'V),
du cn%

7^(1+ ^2. i+^^2^2)
= ^= tn-^a;, or tn-i(a;,;c) (4)

and the integral is K when the upper limit is oo .

Putting a;= sin0, cos^, A^, or tan0 in (1), (2), (3), or (4),

reduces the integral to

/l - Ain20) -id(p = u = FC^i, k)

= am-i(^, K) = sn-i(sin^, /c) = cn-Xcos^, K) — dn-\A^, k) ;

so that

= am u, and cos = en it, sin ^ = sn u, A(p = dn u, tan ^= tn u.
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36. Thus, with a>b>x,

P <J^ _1 1/5 b\

Jj{a'-x\b^-x'} a^"" \b'
J' ^^^

indicating that we must put a;= 6 sin
; and then the integral

is reduced to

a/ (l-|sinV)"% = ^sn-i(sin0,
^)
= ^sn-i(|,

^).

Similarly, with oo>x>a,

/"° dx _1 _j/a b\ ,„,

J J{x''-a\x''-¥) a^"^ \x'
J' ^^'

X

indicating the substitution a:= acosec0 (or acec0, as Dr.

Glaisher writes it).

Thus, for instance, with co>x>1/k,

r dx j\^ \

JJ(\-xK\-kV) ~ ^"^
\kx' V"

Again,

y
^'' dx

,
1 Jx b \ ,^.

J{a^+xKW-x^) J{a?+b^f \b' J{a^+b^)]'
^''

f" dx ' _ 1 Jb a \

J Jia^+x'.x^-b^) V(a' + ^')™ \x' J{a^+b^)]' ^'
h

37. As numerical examples,

X

the integration required in the rectification of the lemniscate

r^=a^ cos 29; so that r= acn(^2s/a, ^*/2)-

yCl^= |^2cn-(^. W2) = W2nc-X.;, ^2),

with Dr. Glaisher's notation (§ 17) of new for IJcnu.
a.B.F. c
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Consider also the vibrations given by the dynamical

equation d^xjdP= — tn^xic^—x\
as in § 30 ; so that a; = gives the point of stable equilibrium,

and x=±c gives the points of unstable equilibrium.

Integrating, supposing the motion to start from rest where

x= h, \{dx\dtf = G-nH^x^-\-\n^a^

(i.) When h^ < c^ the motion is at the outset towards the

origin, and dx/dt— — n^{a?— x^.¥— x^),

writing a^ for 2c^— b'^; so that

n dx ndx _f''dx
'^^~Jj{a^-a?.h^-x^)'y JX J JX

1/ a;\ 6= -(^— sn~V j, with modulus -, by (5)

;

or x = hsn{K—ant).

(ii.) When 6^= c\ dx/dt= ±71(62 -a;^)

;

and, by § 34, the ultimate state of motion is given by

x= b tanh bnt, or b coth bnt,

according as the motion falls away from the position of

unstable equilibrium, towards or away from the origin,

(iii.) Whenc2<62<2c2,
dx/dt= +n^(x^— a^.x^— b^),

r- dx _ f''d^_ pdxJ J{x^-o? . x^-b-") ~J JX J ^
6 ^ ' ' b

= J(^-sn-i^),mod.^,by(6);

or x = b/sn(K—bnt)= bns(K—bnt).

(iv.) When&2 = 2c2,

/"^ dx _1 _^x

JxJ(x^-b^)~b^^''~ b'
^ b

or x= b sec bnt.

(v.) When 6^ > 2c^, we must write a^ for b^—2c^ ; and now
dx/dt= +njia"+x^.x^- b^),

dx
nt

J(a?+x^.x^-b^)

I 1 cn-4^
"

]

or x= blcnjia^+ b^)nt= bncj{a^+ b^)nt.
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38. So far the function X has been treated as an even

quartic function of x, or as a quadratic function of x^, resolved

into two real factors ; but according to Prof. Felix Klein there

are certain advantages in considering the integrals obtained

by writing x^=z, in (1), (2), (3) ; and then, writing k for k\

/jiz.i-l.i-kzr^''''"^''

or 2cn-V(l-2^). or 2dn-V(l-^':2) (H)

Conversely, by writing for z the values x^, 1—x^, 1r=»>fae?^ we
reproduce the integrals (1), (2), (3) from (11), by the simplest

quadric transforTnations; and it will not cause confusion if

we sometimes call k the modulus.

For these and various other reasons, Prof. Klein suggests

{Math. Ann. XIV., p. 116) that we should consider (11) as a

more canonical form of the elliptic integral than (1), the form

with which Legendre and Jacobi have worked.

39. Now, with X= x— a.x—p.x — y, and a>/3>y,
we have, if oo > a;> a,

/"" dx 2
J

la-y
J JX Jia-yf" ^x-y

=-77^cn-J^^=V—^dn-J^ (12)
V(a-y) \«-y y/(a-y) Mx-y

with/c2= A;= (j8-y)/(a-y);

indicating that we must put

a;— y= (a— y)cec^^, a;— a = (a— y)cot^^,'

and then x—^= (^— y)AV cec^^,

to reduce the integral to Legendre's canonical form

F(j>=/{l-ksm^<p)'^d(j>.

Similarly, by putting x-a = (a- /3)ta.n^^, x-^= {a- ^)sec^<f>,

/" Mdx 1 Ix— a

a ^

=cn-i>-g=dn-^>-^-"-^ (18)
yx— p \ a— y.x—p

where M is used throughout to denote ^,^(0— y).

i-.^i.*
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Thus, with oo>x>l/k, integral (11) becomes

/"° dx
^2cn-^ I—y tj{x.l—x.l—kx) ykx

y
"" dx

J, __^ I
kx— 1

J(x.l-x.l-kx)~'-'^'^ ylk.x-l
1/*

1 / 1-^ „, 1 1-k.x
= 2cn-\/, = =2dn-\/ =-.

^k.x—l y x—1

40. When a>x> j3, X is negative, and

/-"Mdx _ _i la-x

^cn-d"^=Sn-d^^, (14)

r^Mdx _ 1 la-y.x-^

= cn-i/-y-"-^=dn-iJfa (15)';
ya—^.x— y \a;—

y

and now the modulus k is given by K'^= fc'= (a— j8)/(a— y),

and the modulus is therefore complementary to the modulus

in (12) and (13) ; and the form of the result in these and other

subsequent integrals indicates the substitution required to

reduce the integral to Legendre's standard forin (§ 4) ; while

the results can be verified by difierentiation.

Thus, with l//c>a;>l, integral (11) is imaginary and may
be written

r ^l" dx _i 11 -kx
/j{x.\-x.i-kx)~ y 1-k

= 2i cn -
1 a/-^j—TT = 2^dn -^J(kx), mod. k';

y^" dx _ .

J
/ x— 1

^{x .1—x.l — kx) yl—k.x

i denoting ^(—1).
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41. When jS> a; > y, X is again positive, and

J :jT -^"^ V/3-y.a-a;

=en-d'r^-''-y=dn-d^ (16)
y p — y.a— x y a— x ^ '

-n-.Vf^;=da-V^£2; (U,

with k={fi-y)l{a-y), as in (12) and (13).

Thus

r^ dx _.^ _j l\—x

JJ{x.l-x.\-hc)~'^^'^ y\-hc

while the result is as in (11) when the lower limit is 0.

42. When y >a;>— oo , X is negative, and

pMd^ _ ly-x

=--Vf3-^-Vf^^' ^^«>

r-M<h> _ la-y

=cn-dy^=dn-d^ (19)
V a— x \ a— x'

witii modulus k'= {a— ^)/{a— y), as in (14) and (15).

Thus, with 0>a;>— oo , integral (11) becomes

yr-o dx _9- -1 j—^
^{x.l-x.l-kx)-^''^'^ ^|l-x

= 2icn-yj4- = 2i dn-^-lj^, mod.A';

y^* (;^/jj .
/ 1
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i

43. We notice that the substitution

^ =^ 75 , or — 75 , or >

x—y p—y x—y p—y x—y a—y
makes

/"^ dx rv dy

JJ{x-a.x-^.x-y)~JJ{y-a.y-p.y-yy
X 1

or changes (12) into (17), or (13) into (16).

Thus
7-°° dx fP dy ^ 2K

JJ{x-a.x-^.x-y) JJ{y-a.y-^.y-y) Jia-y)'"'^
a 7

where k^= Tc= {^— y)/{a— y).

Again the substitution

a-x _a-y
^^
x-^_y-y _ a;-y_ /3-y

a—p a—y a—p a—y a—y a—y
changes (14) into (19), or (15) into (18); and shows that

p dx _fy dy ^ 2K'
JJ^{a-x.x-^.x-y) J^{a-y.^-y.y-y) J{a-y)""^ '

where k'= k'^= (a— ^)l{a— y).

The substitution which changes any one integral into another

is obvious by- inspection of the preceding results.

44. Thus the integral Jdxj^X can be written down, ex-

pressed by inverse elliptic functions, when X is a cubic form

in X, resolved into its three real linear factors.

For example, with a^>b^> c^,

X

an integral occurring in the mathematical theories of Electricity,

Magnetism, and Hydrodynamics, in connexion with ellipsoids.

As another example, the student may prove that

y ds A^TTobc Jc la^-b^
{xjaf + {y/bf + (z/cy~ ^{a^- c^)

^"^
\a' V^^^V'

when the integration is extended over the surface S of. the

sphere x^+ y^+z'^= r^

(W. Burnside, Math. Tripos, 1881).



THE ELLIPTIC INTEGRALS. 39
\

45. When two of the roots, /3 and y suppose, of the culoic

X= are complex, we combine {x— /3){x—y) into the real

quadratic (aj-m)^?!^ suppose; so that X=x-a.{x-mf+ n^
Now we substitute

_ X _ {x—7ny+n^
^~(x-af~ ^^^ '

a quadric substitution, the graph of which is a hyperbola, and
find the turning values of y, say y.^ and 3/3, the values of y
which make the quadratic in x,

{x—'mf+n^^y{x— a) =
have equal roots ; so that y-^ and 2/3 are the roots of

ily -I- raf- {ay+m?+ n") = 0, or ly^+(m- a)y - n^= 0.

> m, (x— X,y (x— x„Y
Then y-y^=y-^-^, 3,_y3=^_^.

and ^^(^ZlM^Zfg)-
dx {x— ay '

x^ and ajg denoting the values of x corresponding to i/^ and y^
and therefore denoting the roots of the quadratic equation

x^ — 2ax+ '2,a'm— m?— n^= Q

;

so that ajj=m+ J2/1, X3=m+ ^2/3.

Then / "— =/
^ ^^ =y {x-a)dy

J JX J{x-a)Jy J {x- x^){x-x^Jy
dy

^/zJiy-y-Vi-y-Vz)

J^y^-Vz) ^yy-yz v 2/1-2/3/

= y^ cn-i^:^, ;..(22)

by (12), with k'=yj{y^-ys), A;.= -2/3/(2/1-2/3).

since y^ is positive and 2/3 negative, or 3/1 > 2/ > > 2/3-

Again, with the same substitution,

yr d^ r dy

^{a-x.(x-mf+n^}Z/s/i-y-yi-y-ys-y)

2
-en -1 IhUl

yy.-y'' Jiyi-Vz) ^yi-y

^^^cn-i -^^ (23)

by (19), to a modulus Ic the complementary modulus of (22),

namely *'= 2/1/(^1 -2/3)-
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. 46. We denote {a—mf+n^ by H^, and then

x^= a-\-H, x^=a~H

;

and by means of the same substitution as in § 45,

dx ^2
J \iJ{x— a.(x— 'mf-\-'n?-) aJ{x-^— x^ x— x^

- ^ cn-^f
-^-^^-"^

.}
JE''^ XH+ix-a)'"]'

K'==i-i(a-m)/H, (24);

Jj{a-x.(x-mf+'n?} JH^"^ XR+ ^a-xy"]'

K"= i+ Ua-m,)/H, (25);

indicating that the substitutions x— a or a— x= H(^^^Y
reduce the integrals to Legendre's standard form ; also that

2KK=n/H.
Thus, as numerical examples,

/ "^ dx 1
_if
x-l-^S \

s/i'^-i) ~ 4/s'''' \x-^ 1+V3'

"

r
"^ p dx _ 1 _^/^:3+ l-a; \

dx 1 _ ^(J'i-l->fX

r dx 1 /i-x-J^ \

J J{l-x^) 4/3^" Vl-aj+ V^'"/'— oo

with 2kk' = i = sin 30°, k = sin 15", / = sin 75°.

47. We notice that ^ = Jtt when x = a±H; so that

y ,»/{«-a.(a;-m)2+n2}

V{a;-'a.(a!-m)2+«'} V-^f
a

V{a— a;.(a;— m)2+ %2}
a—

^

'''+^
c?a; A"

.(26)

y'̂^{a-x.(x-mf+n^} ^H

Thus r ^"^ _r^^^^ dx J?'(sinl5°)..

.(27)

VS+l
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/
^ dx _ r-VS+i dx F{wi 75°)

But, by the Cubic substitution a; = (4 — 2^)/30^,

then i.-^a_ (^-lX^^ + 8)^ dx__z^+S,

— 00 2

-00 1

or ^(sin75°) = V3i?'(sinl5°),

that is, K'IK= y/S, if K= sin 15°, as stated in § 12.

48. Degenerate Elliptic Integrals.

When the middle root /3 of the cubic X=0 approaches to

coincidence with either of the extreme roots, a or y, or when

the pair of imaginary roots become equal, the elliptic integrals

degenerate into circular or hyperbolic integrals.

We notice, from § 16, that when k= 0, sn-^a; becomes sin-^a;,

cn~^becomes cos"^a;, etc.; and that, when A;= l, sn"^a; becomes

tanh"\c, cn"^a; or dn"V becomes sech'^a;, and tn"^x becomes

sinh"^a;.

Thus, when h= \, the integral (11)ydx _ r dx

J(x.\-xA-kx) ~J{\-x)Jx
> = 2 tanh - '^Jx = 2 sech "V(l - «)

= 2cosh-\/^ = 2sinh-\/.-^ =sinh-i|^.
\1— 03 \1— a; 1— a;

This supposes that a; < 1 ; but with oo > a; > 1,

^^ :2coth-Va= = 2cosech-V(^-l)f\x—\)Jx

= 2-b-^^, = 2 cosh-7^-^ = sinh-^^.

But when h = 0, the integral (11) becomes

dx
- = 2sin-^^a;r

/ /(x 1 — a;)'

^Icos-^JO— x) = &m-^2j{x.l-x);
r^ dx T , ,

/-^TXTT—:a = 2 cos -V^
/(a; . 1 — a;)

= 'lSm-'^JO--x)=^-7!--svD.-'^2J{x.\-x).
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49. Making ;8= y, or a, in the integrals (12) to (19), and

still denoting ^ij{a— y) by M, then

(i.) with 00 > a;> a,

/"" Mdx , Ix— a . ila— y
I, \ // - ^= cos-\/ =sm-\/ '-

Z'* Mdx . , Ix— a -. la— y,
/-, N—77——x= sm-\/ = cos-\/ «-;

J ix-y)J{a-x) yx-y ^X-y

r w/ ,
=tanh-J^^= sinh-^J^^::iy

J(x~a)J{x~y) \x-y ^Ix-a
X

= cosh-J^^= Jsinh-^^^P^.

this integral being infinite when x= a.

(ii.) Witha>a;>7,

A ^-77 ; =sinh-\/ ^= cosh"\/^^—^,J {a—x)^{x—y) y a— X y a— X
7

which is infinite when x= a;

y''* Mdx . , , ja— x , _, la— yr—
77

r=smh-\/ = cosh \/ ^,
(*-y)v(«-a') yx-y Mx-y

X

which is infinite when x= y.

(iii.) With y>x> — 00
,

r ^^^ sin-i /r^= cos-i /«~y;
J {a— x)ij{y— x) y a—x ya— x'
X

yr^ Mdx . /y—^ • 1 /a—

y

7 r-77 r= cos-\/-i = sin-\/ i;
(a— a;)^(y— a;) ya— x ya— x

— w
/'=^ il/cZa; V , /a-a; . , , la— y
/-. ^-77 ,=cosh-'-A/ =sinh-\/ -,

J {y— x)J{a— x) \y— a; Xy— a;

- « „

this last integral being infinite when a;= y.

The limits have been chosen so as to exclude these infinite

values.

50. Weierstrass's Elliptic Functions defined.

When the general cubic expression X is given, not resolved

into factors, then Weierstrass's notation becomes useful, and

may be defined here.
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Weierstrass writes s+f for x, and chooses / so as to make
s^ disappear in the new value of X, which he denotes by {S

;

and thus iS= 4s^ - g^s— g^,

where g^ and g^ are called the invariants ; so that the integral

/"" dx fds n ds

J K/xV^jEVji^s^-g^s-gy '^' ^"PP«^^'

and now, inverting the function in Abel's manner, s is an

elliptic function of u, denoted by fu in Weierstrass's notation,

so that

-^^^-——^ = ^-^s, or f-\s; g„ g,) (A)

when the invariants g^ and g^ are to be put in evidence.

51. In Weierstrass's notation we are independent of the

particular resolution of 8 into factors ; but by what precedes

in equation (12), if, when 8 is resolved into real factors,

8= 'i(s— e^)(s— e2)(s— e^), with e^ > ej > e^,

*then, with oo > ;, > e^,

r" ds _ 1 _i /e^— 6
3

'^ y V(4-S-ei-s-«2-s-«3)~v/(«i-«3)^'^ Vs -e,

by (12) ; so that

9 // \ ^i — ^t '1 II \
9''^— ^\

dnV(e.-.>=«. (B)

The value of u for s= e^ is denoted by u,-^, and called the

real half period; and by (20) we notice that

/•" ds fids _ K ,„„.

JSy -JS J(e,-e,y
^^^-^

andby(13)and(By^^-^,=Vf^~^!:';~'H e,) (29)

With e2>s>e^, y/8 is again real, and by (16), (17), and (B),

/'
J8~^ \ s-e,

=9-i-^=^—'+h) (31)
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52. For values of s between e^ and e^, or between e^ and

— 00
. A^8 is imaginary ; however, the value of ydsj^S be-

tween the limits e^ and — oo is denoted by Wg, and called the

imaginary halfperiod; so that, by (21),

/'ids f'K ds _ JK'
,„c\

vsy v^"v(^F^' ^
^

and, from (12) and (14),

K^= (^2- «3)/(«i - h\ 1^"^ = («i- «2)/(«i - «3)-

Also, from (14) and (15), with e^ > s > e^,

y.^^,^.,^V::^^3_,^.
,^. _,3) (33)

i

and, from (18) and (19), with e^> s> —<x>,

/'^=^^-f-^P'^3; 9. -4 (35)

8/s
(is = ip-i(~s; g^, -g^) (36)

— 00

53. The quantity g^— 21g^ is called the discriminant, and

is denoted by A ; it is called the discriminant, because the

roots of jSi = are all three real, or one real and two imaginary,

according as A is positive or negative ; and A = 0, when two

roots are equal.

Since /Sf= 48^- g^s -g^= 4(s- e;){s- e^^s- e^),

therefore 61+ 62+ 63= 0,

and STg= - 4(6363+ 6361+ 6162) = 2(61^+ e^^+ 63^), g^= 4616263,

A= 1 6(62- 63)^(63- ei)\6j- e^f.

Therefore

'cV^= (61- e2)(62- 63)/(6i
- 63)^ 1 -kV^= igj{e,- e,)\

27 kV* a
This quantity g^jL is called by Klein the absolute invariant,

and denoted by J ; and then, with k for k^,

4 (i-k+k^f ^ ^ _ {l+k)%2-ky(l-2ky
27 k'il-kf 21k\\-kf ^^'
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54. For the present we reserve the difficulties of interpreta-

tion of the multiple values of the integral u =J(lsliJS, due to s

being allowed to assume complex values, and to perform

circuits round the poles, branch points, or critical 'points, so

called, of the integral, given by the roots of (S'=0.

We suppose the variable s to pass once through all real

values from 00 to — 00 ; and now
(i.) 00 > s > e,

u

or u

S

= o,,-J~dslJS=co,-p-^{''-l'_il'-''
+e); (37)

which, employing the direct functions, expresses the relation

p(
^,)_e^=?3-VVzi3 (38)

' ^ ^ ^ ^ pit— 61

(ii.) ej > s > Cg,

u= wi^+/ds/^S
s

= ,^+i^-l(£l^^_^3_,^. g^^ _g^y^ (39)

or u= (0i+ Ws—/dslf^8

= „^+«3_ij.-l(V:^1^3_,^. g^^ _g^ (40)

(iii.) e^>s>e^.

It= (Bj+ ttij+/dsj^S

or u = 2w-i^+ u>^-JdslJ8

.2„,+ «.%-e-^=|i^+e.) («)

(iv.) 63 > s > — 00

,

w = 2wi+ wg+JdsjJ8

= 2«,+ a,3+iF-<^^=?iS^+ ^3; 9. -^3); (43)
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or u= 2«)j+ 2a)3— /ds/^S
— CO

= 2a)i+ 2«j3-'i^-i(-s; g^, -g^) (44)

ds/^S= 2u,^+ 2(Cs, (45)

— 00

and 2(Bi is called the real period, and 20)3 the imaginary

period of Weierstrass's elliptic function fu.

With Argand's geometrical representation of a complex

quantity, such as x+iy, the complex quantity

u = twj^+t'u)^ (0<t<l,0<t'<l)

represents all points lying inside a rectangle, called the period

parallelogram.

As s or pu diminishes continually from 00 to — 00 , the argu-

ment u describes the contour of this rectangle ; and for

u = (i.)% (Q<t<l), (ii.)ft)i+ i'ft)g(0<f<l),

(iii.) tw^+w^ll>t> 0), (iv.) t'a)3 (1 > f> 0),

the values of s or pu nice real, and lie in the intervals

(i.) 00 > s > e^, (ii.) e^ > s> e^, (iii.) eg> s> eg, (iv.) 63 > s > — 00
;

while the corresponding values of p'u are taken as

(i.) negative, (ii.) positive imaginary,

(iii.) positive, (iv.) negative imaginary.

For any point u inside the rectangle pu assumes a complex

value. (Schwarz, Mliptische Functionen, p. 74.)

55. In the same way, with the integral (11), denoting its

value between the limits 00 and z by u,

(i.) 00 > z > 1/A; (§ 39),

" -=2--V^=2^-^--Vfei ••(*«)

(ii.) l/k > 2; > 1 (§ 40),

u= 2K+ 2isn-y\^, .')

= 2if+2iZ'-2isn-(^j^,.') (47)

(iii.) 1 > 2: > (§ 41),

'Vr
— zu= 2K+2iK'+ 2sn ^,
kz

= 4^K+2iK'-2sn-'^Jz (48)
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(iv.) 0>z> -00 (§42),

= 4Z+4iir'-2isn-i(^j^,«') (49)

Therefore /^,—.
^^

,—,~^ = iK+4>iK', (50)
»/ ^{3 .1—z.l — Icz)

^

— 00

and AsK and 4iiK' are called the real and imaginary periods of

the corresponding elliptic function, in this case sn^Jw.

56. But if we take Legendre's and Jacobi's fundamental

integral JdxjjJX, where X = 1 — a;^ . 1 — k^x^, and denote

d^l^X by u, then, by the preceding article, with x'- for z,

(i.) 00 > a; > 1//C,

-=--\V^—-V;S^ ^'^>

(ii.) 1/K:>a3>l,

=K+iK'-i.n-^{^'^, .') (52)

(iii.) I>a;>-1,

\ 1 — K X''

= 2ir+i-K''+sn-ia;

= 3Z+iZ'-sn-i^j^ (53)

(iv.) -l>a;>-l//c,

u=3Z+ *if'+isn-i(^^^, ^'j

= 3K+2iK'-isn-^{^yl^^=^, k) (64)

(v.) -1//C >«>—<»,

u =3^+ 2i/f'+sn-i^^J^^

= 4Z+2iZ'-sn-'— (55)

Therefore /("r-a;M-A2)-icte= 4if+2ii:'; (56)

and 4Z and"2iZ' are called the periods of the elliptic func-

tion sn u.
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57. If, with l>a;>-l, and X=\ — x^. 1-kV, we denote

the integral /dx/JX by u ; then /dx/^X=K (§ 11); and (§ 41)

K-u=ydx/JX=sn-^^Y:-^;

or, employing the direct functions,

Vi _— '>?2 en 'U/

r^A^=d^' "^ '''^^' (^^^

and then (§ 17)

cn(^-u)=^j—^=^^,or.sdu; (58)

dn(Z-^)=^^^5^=g^, orK'ndu; (59)

relations analogous to equation (38) ; or to the relations

sind^r— Q)= cos Q, eos(^7r—Q) = sin 6,

of the circular functions of Trigonometry.

58. When the discriminant A of /Sf is negative, and two of

the roots of the equation S= are imaginary, we take e^ as

the real root, and combine the product s — Cj . s — 63 into

(s— m)^+m^, as in § 45 ; and since

therefore m= — ^e^, g^= Se^^— 4%^, g^ = e^+ 4<n\
;

while H^= (e^-my+ n^= j;e^^+n\

4A'2= n?/H^= 4<n^l{9e^^+ 4<n^),

1 - IGk^k^= 3^2/(9e/+ 47i2),

A = gr/ - 27^3^= - 4TO7(9e2

+

4m,^)\ ,

+T, + r_g2^__ (l-16/cV')'_ (l-16/fc+16A;7
sotftat -^-A" 108A'^ 108A;(l-;b) '

. , (l-2fc)^(l + 32fc-32fc^)^ „,•^"^
108/<1-A;)

• ^">

59. Now, as in § 45, by means of the quadric substitution.

^-^2-/-7-TY2- TIT. ' (60)
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we find <^f-
Cs-e2)'--^'- (s-Si)(s-S3)

while . 0-— e^= ^ =^, cr— e.

g-^, suppose

;

provided Si= e2+iZ"= J(ei-e2— eg),

83 = 62--^"= 2(^3-62-^2)-

Thence s^+ S3= £63= ^(e^+ £3) - 63- 63= - f62- «2

!

or 63= — §62 ; on the supposition that ej+ €2+ £3= ;

and Cj = ^2+ 2 J?^, 62= — ^e^, £3= 63— 2fi".

^^^''' y v-s y2(s-s,)(s-s2)V(<r-62)

_ f da^ r "da-

-J2j{a-e^.a-e^.cr-e,) J VS"'^ ^

a

where 2= 4(o-- ei)(o-- e^{a-- £3) = 40^- yjo-- y^,

suppose ; and the discriminant A' of 2 is now positive.

60. Now, y2=-4(e2£3+ f3£i+ £i62)
= 12e22+16if2,

73= 4eie2e3= 3262^^— 862^

,, .,, -5, £,— £3 2^"— 862 .,„ £1-62 2jEf+3e
Also with X^= -^—^=

—

ru' ^ = —^=

—

A u ^>

^1-^3 ^^ ei-£3 ^H

1.X2V2
4g^-9e2^ _7i- i_.2y2_j7^'^'^ ~

4ir2 -if2'
^ '\A -g4,^2-

Denoting by J' the absolute invariant of 2, then (§ 53)

72^ 4 {\-\^W^f
~ A'~27 X*X'*

If we put 4X2X'2= 1/t', then

J,
{W-lf (t^-IKSt+I)!.

'' -
21t'

'

27t'

while, with 4kV^= t in (D),

J (4t-1)^ (t-1)(8t+1)^ .g

Now, if 2kk' = 2XX', then tt'=1, the relation which holds in

the transformation from a negative discriminant in /S to a

positive discriminant in 2.

If we equate the values of / in (0) and (E), we find

{1-kf ¥ 1
'^~~

4/c ' Hl-hy 4>k{l-h)'

O.E.F. D
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61. When A is negative, and when we know the real factor

s—e^oiS; so that, with ie^+n^= ig3/e2,

then, with H^= l{9e2^+4<n^), and expressed as in § 46,

,
.

^y -7S=2jH'''''j^^ (^2)

with 2KK'=n/H ; so that

by means of which we .change from Weierstrass's notation to

Jacobi's and vice versa, when A is negative.

Thus, for example, if g^= 0, then e^= (Igs)^, n^= ^e^^, H^= Se^^;

and, as in § 46,

= 1 , ^^-.[s-U3+mg,)i A
^^•KW ls+ (x/3-l)(i^.,)*' /'

^^7(51^ =rKs; 0,-^3)

= L_ ,^-.[^-iJ^-mg.)' 3i^75ol

24/3(i^a)* ls+ (V3+ l)(i^3)*' r

62. Supposing s to range from oo to — oo in the integral

= /ds/^S, when A is negative, thenu

(i.) oo>s>e2.

u= f-^{s; g^,

=0,2— -1'

<;i:i;+4 (64)

where 0)2 denotes idsj^S, the rectZ half "period of ^w.

(ii.) e2>s>— 00

,

u= u>2+if--'y-^—-^-e2; 9-2, -gTg)

= (B2+<-iS3"He2-s; g^, -g^), (65)

where co^' denotes /ds/^S, a pure imaginary quantity, called

—00

the imaginary halfperiod of pu ; and the period parallelogram
'

(§ 55) is now bounded by w^ and 0)2', as adjacent sides.

Also (§47), (c^^KjJH, a>2'= iK'IJH. (66)
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63. Treating in the same way the integral (2),

u_
/"° dx

Jja-x\K'^+KV)'y/ii-x^.K'^+Kvy
by replacing ^ by 1 -a;^ in §§ 38, 55

;

(i.) oo>a;>l,

J Ik^.x^^-I a

= iK'-icn-\l/x,K) (67)

(ii.) I>a;>-1,
w= 'i^'+cn-^a;

= iK'+ 2K-cn-'^{-x) (68)

(iii.) — 1 > 00 >— 00
,

u= iK'+2K+icn'-\-l/x, k)

= 2i^'+2Z-icn-{/_^..') (69)

64. By the substitution x^= 1/y, the integral

y'^ dx /"" dy
J{AA-Bx^+Ga^+Dx'') J2^{Ay^+By^+Gy+B)

1 /"°ds ,^„.

on putting y= s—^B/Ai which can be expressed by Weier-

strass notation, or by the notation of Jacobi, when the factors

of the denominator are known, as in equations (12) to (19)

;

f E+Fx
^JJ{A + Bx^+ (7a;*

+

Bx^)

can thus be reduced to elliptic integrals, of the form considered

in p 39-61, the first term by the substitution x^= ljy, and the

second term by the substitution x'^= z.

Ihus / ,, „—sr=ErT7JTcn Mt^tr—-.so,—^, sin 15 h

the integration required in the rectification of r^= a^cos 30.

But by substituting i^/a^= l/y, we find

so that ^= j3Q;0,4).
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65. Write X for x^—a?.x^— h'^.x^— (?, where a^ > 6^ > c^

;

and write M for 6^(c(^— c^); then we find, on substituting

y for 1/a;^, and taking a, /3, y for 1/c^ 1/6^ 1/a^

;

(i.) 00 > a;^ > a^, comparing with equation (18),

rMdx_ _j j
g-^-x -^ _ _^ jh^.x^-o?

a

_ _^ la^—b^.x^_^ _^ l
a^—b^.x^-c^ ,_

"""^ ya\x''-¥^'^^ '^a?-cKx'~W-^^^'

V^2
J2_g2

(ii.) a^ > a;^ > 6^, comparing with (171 and (16),

J Ji-X)-^"^ ^Ja^-b\x''
X

=^^ ^^^=¥7^^=^'' ^I^F:^^^!^-
('2>

J J{-X)~^'^ yja^-bKx^-c'
b

/c^ a?— b^
to modulus

yl^2[a2-c^
-

(iii.) b^ > cc^ > c^ on comparison with (15) and (14),

/''Mdx _ J l
a^-c^.¥-x^

JiX)'^"^ ^b^-cKa^-x"

1 la^-bKx^-c'' , , la?-b^.x^ ,-,,

J{X)-^^ ^b^-c\x^
C

V/v2
/i2 ,^ rtZ

fc2"^2_c2
-

(iv.) (?->o^> 0, on comparison with (13) and (12),

f Mdx _ _i \
V.c^-x^

J Ji-X)-^'^ Vc^fc^-a!^
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,0' . s.
o^.a^— c^

66. WhenX is a quartic function o£ x, and we know a factor,

ic — a, of X, then the substitution x — a= l/y reduces

fdxlJX to the form M/dylJY,
where F is a cubic function of y; and this form can be treated

by the preceding rules.

But, independently, if we can resolve X into four real linear

factors, x— a, x— ^, oc— y, x— S,

so that X= x— a.x—^.x—y.x— S,

and we suppose that a > /3 > y > ^ ; then with

(i.) oo>x>a,
dxAy/(x— a.x— ^.x— y.x— S)

2 .„-! ll3-S.x-asn €.'Jia-y./3-S) Ma-S.x-13

2 _i ja-^.x-S
en

\ a—

(

V(a-y.;8-.S) ^a-S.x-P

indicating that we must put

sinV = c^— ^, cos20 = ci——g, A^^ = ^—-—^,^ a— S.x—p ^ a — S.x— p ^ a— y.x— p
to reduce the integral to the standard form (§ 4)

2 r d(j>

J{a-y.^-8)Jj{l - Ic sinV)

'

and then 1^= %= "—J—r,— «>

a — y.p — o

the anharmonic ratio of the four points A, B, C, D, the poles of

the integral (§ 54), given by a;= a, /3 y, S.

The verification by differentiation is a useful exercise for the

student.
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(ii.) With a>x> ^, we change the sign of X to make the

integral real; and now, writing Jf for i/^(a-y.^-S) throughout,

/"^Mdx

X

-sn-i \
^-^-^-^

cn-^ /
a-^.a;-^

_ . , la-S.x-y .

-'"^
^a-^.x-S-""^ ia-^.x-S-'^'' ^a-y.x-8 ^^^>

/•='Mdx

P

-sn-i /^ZZi^-pn-i //3-y-«-a; _ . 1
m-y.x-S

-'''
ia-^.X-y-'''' ^la-lS.X-y-'^'' i jS-S.X-y

^^^>

but now the modulus k' is the complementary modulus to k, so

that /c-^= fc'^ "-/^-y-f ;

a— y.p — (5

the different forms of the result indicate the appropriate substi-

tution required for reducing the integral to the Legendrian form.

(iii.) With ^>x>y, X is again positive, and

/P Mdx

-'''
V/3-y.a-a;-''^ V^-y.a-x-^"" V/3-5. a-cc--^^^^

7

-'"^ ^ /3-y.x^S-'''' ^l13-y.x-S-'^'^ ^la-y.x-S
^^^^

with the same modulus (c as in (78).

(iv.) With y > a3 > 5, X is negative, and

-yMdx

/:V(-^)
= sn

£

l^-S.y-x_
j
^-y.x-S l^-y.a-x

-sn-1 /
«-y-^-^ _r„-i la-S.y-x la-S.^-X

,

with the modulus of (79) and (80).
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(v.) With S>x>—cc, X is positive, and

/^ Mdx

X

= sn-i /
"-y-*^-^

cn-^ j
y~S.a-x ly-S.^-x

with the original modulus of (78), (81), and (82).

67. Landen's Transformation.

When Legendre's and Jacobi's standard integral (1) is

treated as a particular case of these integrals (81) and (82), we
write a= l/A, /3=1, y=-l, ^=-l/A, so that if=Kl+X)/A;
and now, with y for variable,

'1 iji+myAV(i-2/'.i-xy)

/l+X.l-2/_ ll-X.l+y ll-X.l + Xy
V 2.1-Xy

-'''' V 2.I-X2/
-'^''

VlH-X.l-XV^ ^

^ \

Xy M 2.1-Xy Ml+X.l-Xy''
y 10.+X)dy

-''' V 2.I+X2/
-•''' V 2.1+X2/

-"^^
^l+X.\+Xy'"^^^'

where the modulus k is now given by k:^= 4X/(1+X)^ so that

,c= 2VX/(l+X),Ac'= (l-X)/(l+X),or(l + 0(l+X) = 2;

and we are thus introduced to Landen's transformation, to be

discussed hereafter.

Changing, in § 41, x into y"^, and h into X^, we find

y
^^ dy

^(1-2/M-XV)

'

=--Vl^^='^""V^^ =^^"Vi^^ ^^'^

with modulus X ; indicating, on comparison with (86), results

such as

«'«)»-'(Vl^^ X)=.n-.(V'±^^, ?^),

i(i+.)»-.(v?i^,x)=c.-.(V'£^. f^).

which can be translated into the various forms of Landen's

quadric transformation.
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Denoting integrals (86) and (88) by u and v, then

«»'<« ')=^n^. *>(«. '>=fi^4^^. w
, , . , 1 — v^sn>, \) = j--^2'

^'^V' ^)=iT^'' d^'(^' ^)=ri^' (91)

whence snfa X) = (^+'^>^^,^' '^\"^(^' '^)

, etc (92)
dn(u, k) ^ '

We can easily prove, or verify by differentiation, that

Jjii-f.i-xY)
= sn-i{W(l + 2/-l+A2/)-W(l-2/-l-X2/)}
= cn-\^J{l+y.\-\y)+lJO-y.l+\y)}

to the same modulus «:= 2^X/(1+X); so that, denoting this

integral by u, and denoting sn(tt, k) by a;, then

a:=W(l+ 2/-l+A2/)-W(l-2/-l-A2/),

Va - «'') = W(l+ 2/ 1 - A2/()+W(l - 3/ • 1+ X2/).

/n ,.y^ >/(l-XV)+XV(l-y^) _ 1-X
^^' ''^^- 1+X va^v)=W(i^'-^^*^

or dn(u, ,)^
d"faA)+XcnfaA)

^ ^^^^^^^^
dn(.,X)-Xcn(..X)

^-'•+A 1 —

X

since y = sn('y, X), where v= {1+k')u;

and thence

dii(^'>X) = Kl+ X)dn(u,/c)+ Kl-X)nd(u,^), ....(96)

Xcn(^, X) = K1+X)dn(u, Ac)-Kl-X)nd(u,0; (97)

(Cayley, JElliptic Functions, p. 183).

The relation (92) between x and y, namely,

(i+kOVOh^
^ V(i-A^) ^

'^

thus leads to the differential relation

i{l+X)dy _ dx

V(1-2/M-XV) V(l-a'M-'cV) ^^^^
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68. The six anharmonic ratios of a, /3, y, S, arising by per-

mutation or substitution, give rise to six values of the modulus

k, given by

'l'-''-T^-'-lk^l «
orsin^e, cec^e, cos^e, sed^O, -cot^^, -tan^Q, if/<;= sin20;

or tanh- ic, coth%, sech%, cosh%, - cech^u, - sinh'%, if k= tanh%.

"We may notice that the expression for / in (D) of § 53 is

unaltered if for k we substitute any of these other five values

;

and, on comparison with Weierstrass's notation,

so that we may put

l-lc+k^ {l+ k){l-2k){2-k) k\l-k)\
3^= 12 '^^

=
432 ' ^- 256 '-^^""^

and then e^= -J^{^-k), e^=^{-l+ '2k), 6^= x\(-l-k);

so that A;= (eg— eg) /(^i
— 63), as in § 5 1

.

69. Degenerate Forms of the Elliptic Integral.

When two of the roots a, /3, y, iS become equal, the corre-,

sponding integrals degenerate into circular and hyperbolic

integrals, which can easily be written down, on noticing as

before (§ 48) that (i.) when /^= 0, sn-^a; becomes sin-\T, cn-^a;

becomes cos-^a;, etc; (ii.) when k=\, sn-^x becomes tanh-^a;,

cn"^ or dn~^a; becomes sech-^a;, and tn'Hr; becomes sinh'^a;.

When two of them are equal, we may replace the four

quantities a, /3, y, (5 by the three distinct quantities a, h, c,

suppose, where a>b>c; and now the degenerate elliptic

integrals fall into three classes, I., II., III.

I. Writing M for ^J(a -b.a-c); then

(i.) cc>x>a,

f_^Jl^ =.sinh-\/r^-''"-cosh-^J"^
J{x-a)J{x-h.x-c) Mb-c.x-a Mb-c.x-a

(ii.) a>x>b,
px Mdj- ,, la-b.x-G . , _i j

a-cx-b

Jia-x)J{x-b.x-c)= '''^^^b:^^:^x^''''^ ^b^^^r^x

c.x— b

(iii.) 6>a;>c,

r^_ji^ = cos-Jr^-''" - ^^^-'Ji^^^J{a-x)J(b-x.x-c) Sb-c.a-x ^b-c.a-
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yr': Mdx . 1 la— h.x— c _, la— c.b-x
, ^-n r= SIII-Ia/t = COS \/r .

{a-x)J(h-x.x-c) Mb-c.a-x ^b-c.a-x
c

(iv.) c>x>— co,.

f Mdx . , , la-b.c-x , , la—c.b-x
/-, ^

—

n ^ = sinh-\/r = cosn \/j .

J {a— x)J{b— x.c— x) Mb— c.a— x ^b— c.a-x
X

II. Writing M for ij{a -b.b-c); then

(i.) xi>x>a,

r"" Mdx . _i j
b— c.x—a_ _^ la-b-x-c

J {x—b)J{x—a.x— c)~
^^'^

"SI a—c.x—b" y a—c.x—b'
a

(ii.) a>x>b,
y^'^ Mdx _ • -u-i j

b— c.a—x_ , _;^ j
a— b.x-c

{x— b)^{a—x.x—c)~ '\l a—c.x— b~ y a—c.x—b'
X

(iii.) b>x>c,

f"" Mdx , _j l
b — c.a— x _ . ^_^ la— b.x—c

y {b— x),^{a— x.x— c)~ y a— c.b— x
'

y a— c.b—x
c

(iv.) c>x>—co,
r" Mdx _ _^ lb— c.a— x _ . _j j

a— b.c—x

y {b— x),J{a— x.c—x)~ y a— c.b—x~ '

y a— c.b—x
X

III. Writing M for U{a-c. b-c); then

(i.) (x>>x>a,
/^^ Mdx _ , _j la— c.x— b_ . , _^ j

b — c.x— a

J {x— c)^{x— a.x— b) y a— b.x— c y a— b.x— c
a

(ii.) a>x>b,
/"" Jfc?x _j la— c.x-b _ . _j j

b—c.a—x
_

y(x— c)^{a— x.x— b) y a— b.x— c ~ y a— b.x— c'

X

y'^ Mdx . _j la — c.x—b_ _j jb — c.a—x
{x—c)y/{a—x.x—b) y a — b.x—c~ y a—b.x—c

(iii.) b>x>c,
r^ Mdx

. , J
ja—c.b—x_ ,_^ j

b— c.a—x
J {x—c)^{a—x.b—x)~ y a— b.x— c~ y a— b.x—c

(iv.) c>x>— 00

,

r Mdx T _^ ja—c.b—x_ . , _j jb— c.a—x
J {c—x)J[a— x.b—x)~ ya—b.c—x~ y a—b.c—x
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70. When all four roots of the quartic A' = are imaginary,

so that

{x-a)(x-l3) = {x-mY+n^ (x-y){x-S) = (x-pf+ q\

/dx/^X =/{{x-my+ n^ .(x-pf+ q^}-idx

is reduced by the substitution

Jx-my+ n^

Let us suppose that X is resolved into two quadratic factors,

so that X is of the form

X= {ax^+ 2hx+ c){Ax^+ 2Bx+ 0),

where, by supposition, ac— lfi and AG—B^ are negative, so

that the roots of X= are all imaginary.

T . ax^+ tbx-\-c N /nm\»^'^
^^=2^m:25^+o=:d'^"pp°^^'

^^^^)

then the maximum and minimum of y, the turning points of

y, being denoted by 2/1 and y^,

y^-y={Ay^-a)(x^-xflD,y-y.,= ia-Ay,)(x-x,yiD,...{l02)

(c^ and x^ denoting the values of 0; corresponding to
j/i

and y^

of y ; and now
dy _2(Ab— aB)(Xj^ — x){x— x^)

(A()'X\

d^ iAx^+ 2Bx+Cf ^
''

For X is given in terms of y by the solution of

iAy-a)x^+ 2{By-b}x+ Cy-c= 0, (104)

and this equation has equal roots at the turning points of y,

which are therefore given by the quadratic equation

(Ay-a){Gy-c)-(By-by= 0,

or {AG-B^)y^-{Ac+aG-2Bb)y+ac-b^= 0, (105)

and then
By — b _ ax-\-b _ bx-\-c

*= ~Z^^' °^ y~Ax+B~B^^
,, r dx r dx fdxNow /'dx _ r dx _ fc

:JX~J^JWD)JDJ^
Ddy

-f 2̂{Ab— aB){x^— x)(x—x^Jy
_ J{.Ay,-a.a-Ay^)r dy

2(Ab-aB) Jj(y.yi-y-y-y2)'
and (Ay^-a){a-Ay^)= -Ahj^y,+Aa{y^+y^)-a''

_ {Ab-aBf
AG-B^ '
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SO that /4V= UAH m^ Ati —
v • • • (106)

which, by (15), gives / ^^ ' =

-^sn-J^^^=4-cn-J^^^=^dn-A (107)
JVi V2/1-2/2 V2/i ^Vi-Vi y/Vi ^Vi

with /c2= 1 - yjy^, k'^= i/^/i/i

;

the last expression, by the inverse dn function, being the

simplest, as expressing a function of an argument oscillating

between two positive limits, y-^ and y^.

71. For example, if

X= X*+ 2aVcos 2a+ a*

= {x^+ 2ax sin a+ a^Xx^— iax sin a+ a^),

and if y= (x^+ 2aa3 sin a+ a^)/(x^—2ax sin a+ a?),

then a;^= a, y-^= ia,nW-K+ ^a); x^= —a,y^= i&nW-7r—^a);

so that /c'= tan^(j7r— Ja) = (l— sina)/(l+ sina);

^(cc*+ 2aVcos 2a+ a*)

1 J -1 /l~sina.a;^+ 2aa3sina+ a^

-l-sina) \ 1 + sina.a;^— 2aa:;sina+ a^
'

and

a^(l+sina)

x^ _l-\-z

dz

But, by substituting

rj^ dx ^J_ /2
Jj{x*+ 2a^x''co^2a+ a*) 2aJJ(l-z^.>.cos^a+z^sin^a)

J. 1 (jC "— Q/^= H-cn-i(2; sina) = T7-cn-i-^-;—= (109)
2a '2a x^+a^ ^ '

by (2), a reduction of the elliptic integral to a different

modulus, the modular angle being now a ; affording another

illustration of Landen's transformation of § 67.

Thus, with a= \TT, equation (108) gives

where K={J2-\y- (when K'\K=\) ; and by (109),

f" dx
1 i/a;^-! 1 /o\

7(1+^=*'^ 7(1+^' 77(1+^)=^'^ 1+^''*'-

For other numerical examples, the student may take

X= a;*+ 2cc2+ 2, a;*+ 3a;2+ 3, a;*+ a;2+ l, a;*+ 2xH3, etc.
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72. When two roots only of the quartic X= are imaginary,
we may still make use of the substitution (§ 70)

but now take ac— ¥ negative, and AC—& positive.

Proceeding as before we find that the maximum i/^ is positive,

but the minimum y^ is negative ; and y oscillates between
and

2/i
for real values of y/X ; and

/ dx _ 1 r dy
JX J{AG-B^)J J{^y.y^-y.y-y,y

so that, by (14),

rjjAC-B^) 1 ly^-y

J JX ''^-^(2/1-2/3)''' V-^
= 1

, en-xj^= ..
^

,du-\/^:^. ...(110)

with K^ = 2/1/(2/1- 2/3), ,c'2= -
2/3/(2/1

-
2/3).

73. By another method of reduction we shall find

(Enneper, Elliptische Functionen, p. 23)

/;
dx

^{x— a.x— ^.(x— 'my+')i^}

V(^ir) \H(x-^)+K(x-ay''f' ^^"^

y''^ dx

y/{a—x.x— ^. {x —mf+ n^}

JiHKf'' {K(a-x)+H{x-^y''j' ^^^^^

etc. ; where H^={a-mf+ n^, K^=(^-mf+ 'n?
;

and K^= i>-\{{a-^Y-E^-E?)IHK,
K'^=l+ l{{a-^f-H^-K^}IHK;

so that 2/ck'= n(a- ;8)/i?^.

Degenerate forms occur when a and ^ are equal ; and now
dx

{x— a)^{{x—mf+n^]

=
1

cosh
- ,
J{{a-'rrif+n''}J{{x-mf+n'}

^

,J{{a — m)'^+ n^} n{x — a)

dx

{a—x)J{{x-mf+n^}

Ji^

A
1

j.Qgh
- ix/{(«-'»^)^+'^^}-v/{(^-™)^+'^^}

V{(a-m)2+72-2} 7i(a-a;)
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74. Replacing y by N/B in equations (102), then

JSf- Dy^= (a- Ay^{x- x^f

;

so that we may write, according to Mr. R. Russell,

D = Ax^+2Bx+G=P(x-^-xy+Q(x-x^y,
N=ax^+ 2hx+c =p{x-i^-xf+q{x-x^f; (113)

where P= {Ay^-a)l{y^-y^), Q = {a-Ay^j{y^-y^);

and p=Pyv q = Qyr
Interesting numerical examples can be constructed by giving

arbitrary integral values to x-^, x^, P, Q, p, q; and now the

substitution z= ^,

will make, as in § 37,

fdx _f (x^-x^)dz

J JX J Jif+qzKP+ Qz^)
^'^*^

75. When the factors of the quartic X are unknown, we

employ Weierstrass's function, and we shall show subsequently

in Chap. IV. that the elliptic integral Jdxj^X is reduced to

Weierstrass's canonical form \fdsliJ8 (§ 50) by the substitution

s=-i?"/X,

H denoting the Hessian of the quartic X (Cayley, Elliptic

Functions, p. 346) ; we may thus write

J^= ^^'\~X' ^^'^V
^^^^^

where g^, g^ are the quadrinvariant and cubinvariant of the

quartic X or ax*+4!bx^+ 6cx^+4idx+ e,

so that g^= ae— 4^bd+ 3c^

g^= ace+ 2bcd— oaP— eb^— c^,

fl= (ac- b^X+ ^(ad- bc)x^+ {ae+ 2bd- 3c^)x^

+ 2{be-cd)x+ce-d^;

and the general reduction of the elliptic integral of the first

kind fdx\iJX, where X is a cubic or quartic function of x,

is now complete.

The application of this general method to the particular

cases already discussed is left as an exercise for the student.

76. Systematic Tables of the integrals of the elliptic functions

sn Vb, en w, dn n, ns u, ds u, cs u, dc u, nc u, sc u, cd u, sd u, nd tt,

and of their powers have been given by Glaisher {Messenger of

Mathematics, IcSSl).
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Supposeyen ttdu is required ; we may write it

/enudnudu r dsnu 1 . ,. ,1 ,,,~~j

—

— I^TFi 9—9-T = -sm-X'csnu)=-cos-i(dntt),

etc. ; so that

/k en udu= eos ~ ^(dn u) = sin ~\k sn u) = tan - !(« sn u/dn u)

= Jsin-i(2/csnudnw)= am(KW,, 1/k), etc.

Similarly,

/k snttcZu=eosh " \dnu/K'}=sinh " ^(/ccn w/K')=tanh " ^(Kcntt/dntt)

11 dnw+zccnu , dnu+Kcnu , /c'= 2 ^og J = log ^ = log T ,
etc.,dnu— /ccnu ° /c "dntt—^enw

while /dnucZ'M/= cos~^(cnu)= sin"^(snu) =am% (116)

As an exercise the student majj^ integrate nsu, dsu, ...; also

SD^u, cn%, dn%, ...; and obtain formulas of reduction for the

integrals of (sn «)", (en w)", (dn zi)»

As a general method, for (sntt)" for instance, we put

sn^ 0,= s ; and now

y(sn u)Mu =y /(i_g,i_fe)
= ^"' suppose.

By means of the well known formula of reduction,

for Vp=/x'Pdxl^N, where N=ax'^+'2hx+ c,

we have, on comparison,

a=h, b= -iil+k), c=l, p= ^{n-l)

so that Vp— 2Un,Vp+.^ = 2un+2,Vp--^= 2un-2; and

(TC+ l)A;tt„+2-w(l+ /c)'M',i+('n.-l>«-2= sn""^wcnudnM,...(117)

the formula of reduction for %„ =y(sn «)"cZtt.

When the limits are and K, we obtain the recurring formula

{n+l)kun+2-n{l+k)u„+(n—l)un^2= (^ (US)

analogous to Wallis's formulas for /(sin or cos d)''d6.

The same formulas hold for Un= {cduydu, since (§ 57)

cdtt = sn(^— tt).

Thus Un is made to depend ultimately on u^, already deter-

mined, or on Wg; and a similar procedure will hold for the

integrals of (en u^ or (sd w)", (dn w)" or (nd u)", etc.



64 THE ELLIPTIC INTEGRALS.

77. The Elliptic Integral of the Second Kind.

We may mentioa here incidentally that the integrals of

sn%, cn%, dn^u, ns%, ds^u, cs^u, . .

.

require for their expression new functions called elliptic in-

tegrals of the second kind, such as occur for instance in the

rectification of the ellipse.

For if, in the ellipse (x/a)^-\-{y/by=l,

we put x= a sin ^, y= b cos
;

then ^=^+^= a^cosV+ &^sinV = a^(l-e%inV);

so that -=fj{l - ehi-D?^)d^ =/M<I>> ^)<^<P =/dn^udu, (119)
^

on putting ^ = ani(u, e); and e, the excentricity of the ellipse,

is now the modulus.

The integral _/v/(l — /c^sin^^)^^^ or fi^{<^, K)d<j> is denoted by

E{(j), k) by Legendre, and called the elliptic integral of the

second kind ; and when the upper limit is Jtt, the integral is

denoted by U^k, or by E simply, and called the complete elliptic

integral of the second kind.

Examples.—The following examples are collected chiefly

from Legendre's Functions Elliptiques; the results, being

now expressed by the inverse elliptic functions, will serve as a

guide to the substitutions required to reduce the integrals to

the standard elliptic forms, and the correctness can be tested

by differentiation as an exercise.

l.y(l+x^)-Ux= j2on-^^(l+x^yi, |^2|.

2.y{l-x^)-Ux= J2cn-^Ul^.x^yi, ^J2\.

,.P-l)-Ux= cn-{W|zlU^2}.

4. /{x— a.x— ^y^dx

-J( 2 V^-J«-/3-2V(a;-a.a=-/3) \
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7. Prove that, if vf^= 4a;"(l — a"),

(1 -a;»)i-V»c?a;=/(l -a3")i-V»da;= 2-2/y (1 -'m;»)-^c^w ;

2-1'" X

and express the result when to = 3, 4, or 6.

8. Prove that, if a;— a is a factor of the cubic X, so that

X= (cc— a)(aa;^+26a!+c)

;

a

an integral occurring in the determination of the motion of a

projectile in a resisting medium.

Evaluate the integral when aa^+26a+c= 0, so that

X= (3i— a)\x— y).

9. Prove that (i.) /--£5J^=Jl^.
^ 'J 1+ dntt \l+dntt

... r^anudu _ 1

^^•'J dnu+/c'~K'(l+ /c'y

u sn^vdv,= 2K{K-E)Ik?.

i^(0, K:)sin 0d0= - sin - i/c.

(v).y j+^=i-^-

10. Prove that

EIk'^>K>E> 2Z/c'V(1 +/c'^).

11. Denoting the integral /(A4>)-^d(p by u„, establish the

formula of reduction

W%„+2- (%- 1)(H- /c'2)w„+(n- 2)Un-2= - K^sin cos 0(A</.) - ».

Evaluate w„ for to= 2, 3, 4,—

G.E.r.



CHAPTER III.

GEOMETRICAL AND MECHANICAL ILLUSTRATIONS
OF THE ELLIPTIC FUNCTIONS.

78. Graphs of the Elliptic Functions.

Now that the Elliptic Functions have been defined and a

few of their fundamental properties have been established in

Chapter I. in connexion with the pendulum; while in Chap-

ter II. the reductions of the elliptic integral to the standard

form have been tabulated, let us consider some further applica-

tions, and first in connexion with the graphs of am w, en u,

sn.w, dnw, represented by curves whose equations are of the

form y = am x, en x, sn x, or dn x.

The graphs of these equations ai^e given in fig. 5, in curves

(i.), (ii.), (iii.), (iv.) ; the modular angle employed is 45°, so that

the curves can be 'plotted from the numerical values given in

Table II., analogous to the graphs of the circular and hyper-

bolic functions, given in Chrystal's Algebra, Part II. ; thus,

for instance, the curve y = eimx is the graph of the relation

between and it in § 5.

We notice from the equations of § 57, Chap. II., that by
sliding the curves along Ox through a distance ±K, the curve

y = snx becomes changed into y= sn{K+x) = en xjdn x or cix,

and not into y = cnx; while the curve ^Z= en a; becomes changed

into y = CQ(x—K) = K'snx/dnx or Ksdx, and not into y= snx;
so that the curves y= sB.x and y = cnx are essentially distinct

curves, and cannot be superposed, like y= cos x and y = sin x.

The curve (i.), the graph of am cc, consists of a regular un-

dulation, running along the straight line y= ^Trx/K; so that

am cc= i7rx/K+ periodic terms = ^!rxjK+ 1,Bnsin{nTrx/K),
66
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in a Fourier series, where the B's are to be determined sub-

sequently ; and then by differentiation,

dn a;= {^ir/K) { 1 + 2I,nBnC0s(mrx/K)}.

So also the graph of E(p or Esunu, the elliptic integral of

the second kind (§ 77) consists, like (i.) the graph of am a;,

of an undulation running along the straight line y=Ex/K;
so that we may write, in Jacobi's notation,

£am 33 =UxjK+ Zx,

where Zx is a periodic function of x, which can be expressed in

a Fourier series

Zx = 2C„ sin nirxjK

;

and then, by differentiation,

dn^ic=EIK+ (7r/K)I,nC„ cos n-rrxlK

;

whence also the expression for sn^a; and cn^a; in a Fourier series.

y
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Denote by t the tension in poundals of the chain at any

point, and by w the weight in lb. per foot of the chain.

Then the equations to be satisfied are

Therefore tdxjds= T, a constant, the thrust in poundals in

the axis due to the pull of the chain ; and therefore

dsKdx)^ T y-^' ""^
dx^ ds^ T^ "'

the differential equation of the curve of the chain.

But 1+^'= ^,
dx^ dx'^'

, , , dy d^v ds d^s
so that -f- -T^=j- J—.;dx dx^ dx dx'

J ,, J. d^s
,
Ti^w dy .

and therefore ^,+-^-2/^= 0.

Integrating, supposing y= b when dyjdx= and dsjdx= 1,

dx ^^ iT^ y^'

so that t= Tds/dx= T+ in^w(b^- y^).

™»g= (|-0(|H-l)-?"(''-rt{l-^>-«}.

SO that X is an elliptic integral of y, of the form (5) in

Chap. II. ; and y is an elliptic function of x, obtained by

inverting the function of the integral.

To obtain this function, \&i y = h sin (j> ; then

so that d> = am K-, where— = ^^ ;

a a 2T

and yjb= sn Kx/a,

the equation of the curve formed by the chain ; and now 2a

denotes the distance between the ends of the chain.
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We may denote T/ln^w by h^ ; and now

whence the modulus k and quarter period K can be determined
when h and a are given ; and

(^a;
^^

/i2
-^+ ^'2 -^72 --l.

while ^ =-A0;
ace a

sothat ^=^Ad,-^^-^A<6-^^-
and integrating, with the notation of §§ 5 and 77,

If 2Z denotes the length of the chain, then s= l when = |Tr,

and F{^, k)=K, E{<j,, k)=E; and therefore

l+a= iEKh^ja= bE/K= 2aAy^/c'^

from which k, K, and E must be found by a tentative process,

from Legendre's F.E., II., Table II., when a and Z are given.

For instance, if k= k=\iJ2, as in Table II., page 11,

^=1-85407, ^=1-35064.;

and 6/a= 1-5255, ?/a= 1-9206.

80. When the chain is fixed at two points not in the axis,

nor in the same plane through the axis, the chain when re-

volving in relative equilibrium will form a tortuous curve,

which will sweep out a surface of revolution, of which the

preceding curve y/b= snKx/a is a particular case of the

meridian curve, while the general equation is of the form

y^+z^= ¥sn^{Kx/a)+ c^c)a.%Kx/a).

For in this more general case the equations of relative

equilibrium are now

Three first integrals of these equations are

.^ m, Q\

^2/^-^)=^'^'*^^^*^^'' ^^>

and t+\'n,^w{y'^+z^) =\ a constant (3)
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Putting y^+z- = r^,

,, dy dz _ -^dr^

^dx dx~ dx'

and from (1) and (2), y^-z^= -^;

therefore, squaring and adding,

jdf .d^\_ ,/*:!? , E:
^\dx^'^dxy~^\dxJ ^T^'

°^
\dx)

-*' W V T^

=V^(r^-Ar^+Br^-C)=^{r^-¥){r^-c^){r'-d^

-suppose ; and for r^ to lie between b^ and c^ we must suppose

d^>b^>r^> c^, and as it is of the form (17), p. 37, we put

h'^-r^= (62- c^)cos^(j>, r>--c^= {b^- c^)sm^<f>,

d^-r^=d^-G^-(b^- c2)sin2^ = (c?^- c^)A^^,

where K^= {b^— c^)l{d^— c^).

Then (^^= 4(&2_ c2)2cos2^ ^i^^V^'

™*^'\&2_ c2)2(d2_ c2)cos20 sin29!,A%
T'2

or 3^2- 4^2 ^"^ O^^-

SO that (j>= siaiKxja,

where Z2/tt2= TO*-it,2(£^2_ c2)/4r2= 4((i2_ c2)/A,*

;

and then r2= 2/2+ s^= bhn^Kx/a+ c^cn^Kx/a,

the equation of the surface swept out by the chain, the meridian

curve being similar to curve (iv.) in fig. 5.

81. The chain will obviously take up the form which, with

given length between the two fixed ends, has the maximum
moment of inertia about the axis of revolution ; and we have

thus investigated the solution of an interesting problem in the

Calculus of Variations.
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The form of the chain for a minimum moment of inertia is

obtained by supposing that r^ > d^, as in (13), p. 35 ; and by
putting r^-d^= (d^-h^)tein^^,

r2-62= ((^2_52)sec20,

r2- c2= (rf2_c2)A2^sec29i,

k2= (Z,2 _ c^)/(d^-c^), as before.

="^d^- hY{d?- c^)tanV secVAV,

so that ^ = am Kxja,

and then y^+z^= dhec^,p- b^ia.n^^

_d^— hhn^Kx/a

cn^Kx/a

= d^Dc^Kx/a— hhc^Kx/a

is the equation of the surface of revolution upon which the

chain lies, when its moment of inertia about the axis of x is

a minimum.

The projection of the chain upon a plane perpendicular to

the axis is to be investigated subsequently.

82. When the two points to which the ends of the chain are

fastened lie in the axis, or in a plane through the axis, the

chain takes the form of a plane curve, whose equation is

y/b = sn Kxja
for a maximum moment of inertia, as already shown in § 79

;

and y en Kx/a -d, ov y = dnc Kxja
for a minimum moment of inertia; which can be proved as a

simple exercise in the Calculus of Variations, by considering

the variation of the integral

/{y^+\)J{l+f)ds.

83. Peoblem II. " The curve on which an ellipse, of semi-

axes a and h, must roll for its centre to describe a straight line

Ox is the curve whose equation is

y/a=dnx/b,

the modulus k being the excentricity of the ellipse."
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For if the centre M of the ellipse describes the horizontal

straight line Ox (fig. 6), M must always lie vertically over P,

the point of contact with the fixed curve, so that the ellipse

rests in neutral equilibrium if its centre of gravity is at the

centre M; teeth being cut in the curves, if requisite, to prevent

slipping.

Therefore the polar subnormal

must be equal to the subnormal

MQ= —M^y-^ in the fixed curve AP, where MP= r= y.

Fig. 6.

Now in the ellipse, difierentiating.

since
V^-l-^^^-l)^"^'^' 6^-i=(p-^2)cos^0;

or —— ^ -—

—

-

'

de ab

so that in the fixed curve AP
dy_ J(a^-y^.y^-¥)
dx~ ab

'

-
/;(„.;;-/^,._t,=^^°-{lV(^-g)}-

by (9), p. 83 ; or, by inversion of the function,

yja=dnx/b.
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The arc of the rolling curve is obviously the same function

of r as the arc of the fixed curve is of y ; and therefore the

arcs are expressible by elliptic integrals of the second kind.

The curve AP can be described as a roulette, by a point P
fixed to a certain curve which rolls on Ox, and therefore

touches Ox at G, since G, the foot of the normal PG, is the

centre of instantaneous rotation.

Since PM is the perpendicular from a pole P on the tangent

of the rolling curve, and that the relative orbit of P and M is

the ellipse, therefore the pedal of the rolling curve with respect

to the pole P is an ellipse; or, in other words, the rolling

curve is the first negative pedal of an ellipse with respect to

its centre, that is, the envelope of lines drawn through each

point on the ellipse perpendicular to the line joining the point

to the centre of the ellipse.

The first negative pedal of an ellipse with respect to its

centre is called Talbot's curve ; its {p, «) equation is

p^ a^ h^ '

and it is of the sixth degree (Cayley, Proc. R. S., 1857-9, p. 171).

84. For a rolling hyperbola, changing the sign of b^, the

fixed curve must be given by

z' abdy _ ab _Aa b \

a

by (8), p. 33 ; so that, by inversion of the function,

ajy = en xJaK, or yja— nc x/aK,

is the equation of the fixed cui-ve for the hyperbola.

85. When the fixed curves are of the form of curves (ii.) and

(iii.) in fig. 5, we shall find in a similar manner that the rolling

curves which will rest upon them in neutral equilibrium are

given by
1 _ cosh^0 sinh^g 1 _ cosh^e _sinh^e

Taking the first of these two rolling curves,
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or — = —3Li I L

dd ab

so that in the corresponding fixed curve

dx ab

f' abdy _ ab fy a \

J J(a^-y2,b^+y2) ^(a2+
j2)Cii

la' ^(a^+ b')j'

by (7), p. 33 ; so that, by inversion,

yja = caxjbK, with mod. K= a/^(a^+ b^).

Similarly it can be proved that the second rolling curve can

rest in neutral equilibrium on the fixed curve (fig. 5, iii.)

yla= STix/a, with mod. a/b.

86. Problem III. Dynamical Problem. " The curve

r en = c is the relative orbit of the centres of gravity of a

straight rod fitting into a smooth straight tube, resting on a

smooth horizontal table, when struck by an impulsive couple,

the centres of gravity of the rod and of the tube being initially

c feet apart."

Suppose the rod to weigh m lb. and the tube to weigh

M lb., and denote the moments of inertia about the centres

of gravity by mlc^, MK^ (lb. ft.^).

Then, if P is the C.G. of the rod, Q of the tube {PQ= r), and

the (stationary) c.G. of the system,

OP=Mr/(m+ M), OQ^mr/(m+ M).

Denoting by ti the initial angular velocity communicated to

the system by the impulsive couple, then from the Principle of

the Conservation of Angular Momentum,

{m{k^+OP^)+M(K^+ OQ^)}(de/dt),

( 72 , n/TT^i ,
'mMr^\dd { ,„

,
,,„„

,
mMc^\

or [m¥+MK^+,^^^^)^^= {mh-+MK^+,^n....{l)

Again, from the Principle of the Conservation of Energy,

^^ \m+MJ dt^^^''\m+M)^ dt''^^^^^ df
or, after reduction,

1 TfiM fdr^ ,
M^\ , ., ,„ ,

„„„,cZ02
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the kinetic energy in foot-poundals, is constant, and

Therefore, employing the value oidQjdt given by (1),

m+ lf
or, finally,

dQ"-
^

V/c'^+ ifiiTHmMc^jim+ M)'
^'^^

so that r is an elliptic function of Q, given by (8), p. 33.

We therefore put ?'= c sec ^ ; and then find

^=l-,c%inV = AV,

where .^= ^nk^+MK^
.

m¥+MK^+mMc^/{m+M)

'

so that ^ = am 0, cos ^ = en ; and therefore

r en = c.

87. When c= 0, k=1, and this method fails ; but now
id7^_. i?iil/r^ _ r-

suppose, where a^=(m+M)(m/c^+MK^)/7nM;

and now ==/ //i
.^

2/ 2\
= sinh - 1-,

or r sinh = a,

the equation of one of Cotes's spirals, the relative orbit of the

centres of gravity of the rod and tube, ultimately described

after leaving the unstable position of coincidence.

The system of the rod and tube may be supposed started

by any arbitrary impulse, not necessarily a couple, and the

essential character of the relative motion is unaltered: but now
the C.G. of the system is no longer at rest.

88. Other mechanical arrangements, leading to the same

equations of motion, will readily suggest themselves ; thus the

tube may be supposed to be one of the hollow spokes of a

wheel of weight M lb., moveable about a fixed vertical axis,

while the rod is one of a number of equal rods, or balls, of

collective weight m lb., one in each tube, and initially placed

with the C.G. at a distance c from the axis of the wheel.
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Now, if the wheel is started by an impulsive couple with

angular velocity n, the path of the C.G. of each rod or ball in

its spoke will be of the form

rcn6 = c.

89. Problem IV. Central Orbits and Catenaries expressed

by Elliptic Functions.

When a Central Orbit, expressed in the polar coordinates

(1/tt, 6), is described under an attraction to the pole, of magni-

tude P (dynes per gramme), then, as is proved in treatises on

Dynamics, P is given by the equation

73 1,2
2/^<^^"

, \ 1, I jdO 1 do

^=^''\W+V' ''^''' ^='di = u^ Tt'

and the constant h is twice the rate of area swept out by the

radius vector ; and v the velocity is given by

Given the equation of the orbit as a relation between u and

0, the value of P as a function of u is thence easily determined

by differentiation, as in § 30 ; let us then determine P for the

orbits a'U = sn, en, tn, or dnm0;
also for the inverse curves

au— As, nc, cs, or ndwi^,

in Glaisher's notation ; the remaining orbits

au= cd, sd, dc, ds md

;

are not distinct curves, being merely formed by reflexion in the

line 6=lK/m, since cd 7nO= sn(K—md) (§ 57), etc.

As in § 30, we shall find by differentiation that (d^iJb/d6^)+u is

always of the form Au+Bu^, so that P is of the form fitju^+ vu^
;

and conversely, given this form of P, we find by integration

that {du/d6y is of the form C+Du^+JEu^; so that 6 is an

elliptic integral of u, and u an elliptic function of 9, of which
the results are given in § 36.

When the orbit is given by

au= sn^mO, cn^md, dn^m^, . .
.

,

we find by differentiation, as in § 30, that P is of the form

\u^+ fiu^+vu'''; and conversely, when P is of this form,

(du/dOy is a cubic form in u; and 6 is given as an elliptic

integral or inverse elliptic function of u, by the results of

equations (12) to (45), Chap. II.
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As an exercise the student may determine the value of P
and v"^, as functions of w or r, in the orbit

1 _cn?TfnQ sn'^mB
^~ a^

"' W
and its inverse curve, whose equation is of the form

Similarly the centi'al forces required to make a chain assume

the form of one of the preceding curves can also be determined

(Biermann, Problemata quaedam Tnechanica functionwm
ellipticai^m ope soluta, Beroliui, 1865).

When a transverse force T is introduced into the field of

force, then h is no longer constant, but, as demonstrated in

treatises on Dynamics and the Lunar Theory,

dh?_2T T dlogh
de'u^'^^hV' dd '

, d^u _ P T du
while m^'^~mi?~wu^de'

so that p^u.y?(^^+,,+^^

0°gS)+%^=^' °' ^m=^' ^ '°^'*^^*-

If we assume F= h^u^ ; then

A
de

But -r7= hu^, so that -^ = Gu?, or jt=— C, which shows
dt dt dt

that the body approaches the centre with constant velocity C.

Suppose, for instance, we take an orbit given by

mO= am au,

then k=G^= G- dn au = G-J(l-Khm^md)

;

du m, TfC

and P^h^v? = C2^(l-/c%in2m0),

y= ly?^ = _a^—K%in m0 cos m0

;

^ dQ m
so that F, the potential of the field of force, is given by

2 mr r^

and then ^^~z7' ^~^d'
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90. Problem V. The motion of Watt's Oovernor.

"The oscillations of Watt's Governor between the inclina-

tions a and ^ to the vertical, when constrained to revolve with

constant angular velocity w, are given by

tan^0= tan|adn(iii, k), with k'= tan|j8/tan|-a,

where 6 denotes the inclination of an arm to the vertical axis

at the time t."

Consider the motion of either rod and ball, as if unconstrained

by the other, and denote by C the moment of inertia of the

rod and ball about its axis of figure, and by A the moment of

inertia about the axis on which the rod turns at the upper

joint (fig. 7).

Fig. 7.

Drawing the three principal axes OA, OB, 00 at 0, and

three moving coordinate axes Ox, Oy, Oz, such that Ox
and OA are coincident, Oz is vertical, and yOz, BOG in

the same vertical plane, then the components of angular

velocity about OA, OB, 00 are —{dd/dt), — wsinO, to cos 0;

and the corresponding components of angular momentum are

—A{dQjdt), —Aws\a.Q, CwcosQ.

The components of angular momentum about Ox, Oy, Oz

will therefore be

/ij= -A{de/dt), h^= {C-A)cosmecose, h^= (Gcos^e+Asm^6)w;

while the component angular velocities of the coordinate axes

Ox, Oy, Oz are 0i= O, 02= 0, Og= w, with the notation of

Routh's Rigid Dynamics.

Take the poundal as the unit of force, and denote by M the

weight in lb. of either arm and ball, by h the distance in feet

from of the centre of gravity; the equation of motion
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obtained by taking moments about Ox or OA is

}-hA+he^=L,
'dt

or -A{d]^eidP)+{A-G)u?&mecQBe= Mgh^\iie; (1)

so that, if^ = C, tlie motion reduces to simple pendulum motion.

Integrating, on the supposition that a> Q> fi, and that

dOldt= when 6 = a and j8,

-p-=—^—toXcosO— cosa)(cos^— COS0) (2)

The position of relative equilibrium is given by d^OJdt^= ;

and then, if = y,

cos y= Mgh/{{A -G)w^ = i{cosa+ cos ^), (3)

so that in these oscillations the point D, which controls the

valve, makes equal excursions above and below its position of

relative equilibrium.

The technical name for these oscillations is " Hunting "
; and

some kind of frictional constraint is required to prevent these

oscillations from becoming established.

(Maxwell, Froc. R. S., 1868.)

Denoting tanja, tan|/3, tan JO by a, b, x respectively, then

equation (2) may be written

4 dx^ A-G1 Jl-x" l-a?\/\-h^ \-x^
''^Vl+a;'^ H-aVVl + 62 l+xV'{l+x^fdf^ A W+a? l+aVVl + 62 1+

or ^= Ari^co^cos^la coa^^ia'- x^){x^ - h^)
;

dt^ A
and this, by equation (9), p. 33, gives

x= aAn{nt,K), or tan|0= tan|adn%f,

where k = h/a= tan|^/tan Ja, and n= wsin Jacos J/3;,^/(l — GjA).

For a small oscillation, we put a = /3; and then k'= 1, k = ;

and now the period of an oscillation

27r^ 4Tr / A
n w sin av A — G'

91. If we suppose the whole weight of a rod and ball con-

centrated at the centre of gravity, we have 0=0, A=Mh^;
and now the motion may be assimilated to that of a particle

in a smooth circular tube, which is made to rotate about a

vertical diameter with constant angular velocity co.

(Prof B. Price, Analytical Mechanics, § 403).
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The equation of motion (1) now reduces to

li-TT^— ^co^sin 6cos0= —g sin 6,

where h denotes the radius of the circle; and for oscillations

on one side of the vertical between a and ^, a>0> ^,

(de/dty= w%cos d-cosa) (cos /S- cos 6),

the solution of which is, as before,

tan J0= tan ia dn nt,

where k = tan ^/3/tan Ja, n= a)sin^a cos J/3.

If the particle in its oscillations just reaches the lowest

point of the circle, ^= 0; and then k=0, k=1; and now

dnn.^ degenerates into sech nt (§ 16) ; so that

tanJ0= tan|asech'n-f, where 'n,= (osinJa;

the position of relative equilibrium being given by

cos y= g/ui%= Kl+ ^os ") = cos^Ja.

If the particle passes through the lowest point, it will come

to rest again where 6= —a; and now

(dO/dty= w%cos 6— cos a)(2 cos y— cos a— cos 0),

where 2 cos y— cos a > 1; and the solution of this equation is

tanJ0= tan Ja en nt, where n= a)^(cos y— cos a).

When a= 7r, we shall find the motion given by

so that, after an infinite time, the particle just reaches the highest

point of the circle, where it will be in unstable equilibrium.

A still greater velocity of the particle relative to the tube

will make the particle perform complete revolutions, which

will be expressed by
tan J9= tn nt.

We have supposed the cii'cular tube to be made to rotate

with constant angular velocity about a vertical diameter ; but

the motion of the particle relatively to the tube will be found

to depend on similar equations when the tube is attached in

any other manner to the vertical axis.
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92. Such will be the motion of a pendulum swinging about

an axis fixed to the Earth, and now it is interesting to notice

other cases of motion of bodies which can be directly compared
and made to synchronize with the motion of an ordinary

pendulum, swinging through a finite angle.

Thus the pendulum, if moveable about a smooth vertical

axis, which is fixed to a wheel moveable about a fixed

vertical axis, the inertia of the wheel being sufficiently great

for the reaction of the pendulum to have no sensible effect on

its angular velocity, will perform pendulum oscillations, with

g replaced by aw^, u> being the angular velocity of the wheel

and a the distance between the axis of the wheel and of the

pendulum.

Again a cylinder of radius a and radius of gyration h, rolling

inside a fixed horizontal cylinder of radius h, will synchronize

with a pendulum of length l= (j3 — a)(\+l?ja?).

If the fixed horizontal cylinder is free to rotate about its

axis, and has its centre of gravity in the axis, then the length

of the equivalent pendulum is

l={h-a){l+ n), where ^ = "2 /
(l + -2 JJXV'

mk^, MK^ denoting the moments of inertia about the axes

of the rolling and fixed cylinders.

The rolling cylinder may be replaced by a waggon on

wheels, and the motion can still be compared with that of

a pendulum.

A circular cone, whose C.G. is in its axis of figure, and whose

axis is a principal axis, performs pendulum oscillations when

it rolls on an inclined plane, or inside or outside another fixed

cone, whose axis is sloping, the vertices of the cones being

coincident; the determination of I, the length of the equivalent

pendulum, in these cases is left as an exercise to the student.

In those cases where the finite oscillations are not of the

pendulum character, we suppose the motion indefinitely small

;

and now, in small oscillations under gravity, instead of giving

the formula for the period of a small oscillation, it is in general

simpler to give I, the length of the pendulum, whose small

oscillations have the same period.

(J.E.F. F
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Thus for the vertical oscillation of a carriage on springs,

I is equal to the perihanent average vertical deflection of the

springs, due to the weight of the body of the carriage.

For the small vertical oscillations of a ship, l=V/A, where

V denotes the displacement of the ship (in cubic feet), and A
the water line area (in square feet) ; and if the ship is floating

in a dock of area B sq. feet, then it is easily proved that

93. The Reaction of the Axis of Suspension of a Pendulum.

It is important to know the magnitude of this reaction in

the case of a large swinging body, like a bell in a church tower.

Denote by X and Y the horizontal and vertical components

of this reaction, considered as acting on the swinging body

;

and take the gravitation unit of force, the force of a pound.

Then X, Fand W, applied at the centre of gravity (fig. 1),

will be the dynamical equivalents of the motion of the body,

collected as a particle at G ; and since the component accelera-

tions of G are h(dO/dty in the direction GO,

and h(d^6/dt^) perpendicular to GO,

therefore, resolving horizontally and vertically,

Wh{d^ejdt^)cos e- Wh{dd/dt)hin 6 = Xg,

Wh{d^d/dt^)sm 6+ WhidO/dtycos 6= Yg-Wg;
while, from the pendulum motion,

l{d^e/df) = -g sin 9, il\d6ldty=g{2R-l vers G).

From these equations we find

F h 4>Rh . 2h .,, „,

Tfr= 1 —jSin^O H

—

j2~ "^o^ ^~ -^cos 6{1 — cos 9),

Y . h /2h 4m .
,
3/i „,

or
1J7~^+7=~V1 ^jcos0-|—^cos^e;

X (2h 4>Rh\ . ^ 2h. . „

and therefore the resultant of X and F— W{1 — h/l) is a force

in the direction GO ; and T varies as the depth of P below

the line y = ^l+ ^R,

whence X and F are easily constructed.
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94. In the simple pendulum, h= l, and the tension T of the

thread PO is given by

At the end of a swing y = 2R, and T/F= 1 - ^Rjl ; so that,

if 2R is less than I, T is always positive.

But if 1R is greater than I, so that the plummet swings
through more than 180°, T changes sign, and the thread will

become slack, unless replaced by a light stiff rod.

When 2-R is greater than 11, the pendulum makes complete

revolutions ; and now, at the top of a revolution, y = 21, and
T/W=4!Rjl—o ; and when 2R is greater than ^l, T is again

always positive, and the plummet can be whirled round at

the end of a thread, without the thread becoming slack.

95. When the axis of suspension of the pendulum is hori-

zontal, and cut into a smooth screw of pitch p, the equation of

energy gives

^W(h^+k^+2J^)ideidt)^== Wg(H-hvers 0),

if the centre of gravity descends from a height H above its

lowest position ; so that

,jL^+h^+p^)(d^d/dt^)=-gh sin 6,

and therefore l= h+ (k^+ P^)/^ >

and now in addition to X and Y, the reaction of the axis exerts

a horizontal longitudinal component Z and a couple pZ, given by

w d^e - Wpk sin e

g
'^ dt^~ fi'+ k^+ p^

Similarly the increase in I due to the pendulum being sup-

ported on frictidn wheels may be investigated.

As an exercise the student may investigate the small oscil-

lations of a system of clockwork, in which the wheels are

unbalanced about the axes, and prove that for small oscilla-

tions the length of the simple equivalent pendulum is given by

I = CEwk^p^)j(I,whp^cos a),

where w denotes the weight, wh the moment, and wk^ the

moment of inertia of a wheel about its axis ; a denoting the

angle which the plane through the axis and centre of gravity

makes with the vertical in the position of equilibrium ; and

p denoting the velocity ratio of the wheel.
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96. The Internal Stresses of a Swinging Body.

These internal stresses are most forcibly realized on board a

ship rolling in the sea, not only in their effects as producing

sea-sickness, but also in causing the cargo to shift, if the cargo

is grain, coal, or petroleum, in bulk.

It is usual to consider the ship as acted upon by two forces,

(i.) W tons, the weight or displacement of the ship, acting

vertically downwards through the centre of gravity G,

(ii.) W tons, the buoyancy of the water, acting vertically

upwards through M the metacentre (fig. 8).

Fig. 8.

These two forces form a couple of moment W . GM . sin Q

(foot tons), so that the ship will roll about a horizontal longi-

tudinal axis through G, like a pendulum of length GL= k^/GM

feet, Wk^ denoting the moment of inertia of the ship about

this axis of rotation.

Now to find the force which acts upon w, any infinitesimal

part at P of the ship, to give it its acceleration and to balance

its weight, we refer the point P to axes Gx and Gy, drawn

upwards through GM and perpendicular to GM.
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This force will balance the reversed effective force of w at P
and the effect of gravity on w ; and therefore, in gravitation

measure, will have components

w
2/ -^ ^ \df)

"'"'"^ *^°^
'
P^^^llsl to Gx,

g'^W~g-^ \di)
+^ ®^^ ^' Parallel to Gy.

If w is suspended as a plummet by a very short thread, the

thread will take the direction of this force, and will therefore

make an angle with Gx

_ iff
sin e- x(d^e/dt^)- y(dd/dty

gcosd+ y{d^e/dfi) - x(de/dtf

Supposing the ship to roll like a pendulum of length I,

through an angle 2a, then

l{d^eidf)=r -g sin 6, and ^l(deidty-= g{cose-cos a)

;

and by § 8,

dW/dt^= — 7i%in d= — 2n^sin^6 cos |0 = — 2n^K sn nt dn oit,

(dO/dt)'^= 27i^(cos 6— cos a) = 4fn%ahl^a— sin^O) = in^K^cn^nt.

At any instant the lines of reversed resultant acceleration

will be equiangular spirals, of radial angle 0, round the centre

of acceleration G as pole, the resultant acceleration at P being

gj sin 6 cosec 0, and the resultant effective force Wj sin 6 cosec 0,

when we put GP= r, and l(d6/dt)'^=g sin 6 cot <p; so that

tan = (sn nt dn nt)/{2K cirnt).

Superposing the effect of gravity, the resultant lines of force

or internal stress will be equiangular spirals of the same radial

angle <p, round a pole J, the position of which is obtained as

follows (fig. 8) :—Draw LK perpendicular to GL to meet the

horizontal line GK in K; describe the circle on GKas diameter,

and draw ^J" making an angle GKJ=<j> with GK; this will

meet the circle in /.

For the resultant effective force of w at P, being

r PG
f= Wjsin 6 cosec = Wj^,

making an angle with GP, will, when compounded with w
upwards, and taking the triangle PGJ turned through an

angle as the triangle of forces, have a resultant

t=w . PJ/GJ, making an angle with JP.
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This will be the tension and in the direction of a short thread,

from which w is suspended as a plummet at any point P ; and

the deflection of this plumb line from its original mean direc-

tion in the ship will be a measure of the tendency of a body

to slide or of a grain cargo to shift ; and to a certain extent of

the tendency to sea-sickness at this point of the ship and at

this instant of its motion.

The tendency will clearly have its maximum value at the

end of a roll, when dO/dt= 0, and ^ = ^tt, and then / coincides

with K. (Prof. P. Jenkins, On the Shifting of Cargoes, Trans-

actions of the Institute of Naval Architects, 1887.)

The plumb line at P will now set itself at right angles to

KP, while the surface of water in a tumbler at P will pass

through K ; and a granular substance at P will begin to slip

if KP makes with its surface an angle greater than the angle

of repose of this grain.

Thus up the mast, at a distance a feet from G, water would

be spilt out of a tumbler, or sand in a box would shift, by the

rolling of the ship through an angle 2a, which would not spill

or shift, if the ship heeled over steadily, until an inclination /3

(the angle of repose of the sand) was reached, given by

tan /3= (1+ a/Z)tan a.

At the centre of oscillation L, where a= —I, there is no

tendency for the water to spill, and this shows that the motion

of the ship is felt least by going down below as far as possible

in the middle of the ship.

In a swing the body is very near the centre of oscillation,

so that ordinary swinging is very little preparation for the

motion of a vessel.

A swing to act properly as a preparation for a sea voyage

should be constructed as in fig. 5, to imitate, in full size, the

cross section of the ship, suspended at M ; and now the varying

effect of the motion can be experienced by taking up different

positions on the deck, up the mast, and in the cabins, con-

structed in this swing.

Sir W. Thomson proposes to find the axis of rotation of a

ship and the angle through which the ship rolls by noting the

direction of the plumb lines of two such plummets, suspended
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at two given points across the ship
;
planes through the plum-

mets perpendicular to the plumb lines at the extreme end of a

roll would intersect in K; the horizontal plane throughK would
meet the median longitudinal plane of the ship in the axis G

;

while the plane through K perpendicular to the median plane

would rSeet it in L, whence OL, the length of the equivalent

pendulum, and therefore the period of small oscillations could

be inferred, as a check on this construction.

Example. A rod AB, whose density varies in any manner,

is swung in a vertical plane about a horizontal axis through A.

Prove that the bending moment of the rod is a maximum at a

point P, determined by the condition that the c.G. of the part

PB is the centre of oscillation of the pendulum.

97. Problem VI. The Elastica or Lintearia.

The Elastica is the name given to the curve assumed by a

uniform elastic beam, wire, or spring, originally straight, when
bent into a plane curve (fig. 9) by a stress composed of two

equal opposite forces T, on the assumption that at a point P
at a distance y from the line of the applied stress the bending

moment Ty is equilibrated by a moment of resistance Bjp,

proportional to the curvature l/p ; and the constant B is called

the flexural rigidity of the spring (Thomson and Tait, Natural

Philosophy, § 611).

B' G O MB O M G X

Fig. 9.

Then Ty= Bjp, ov yp=B/T= c^, suppose

;

and by KirchhoflTs Kinetic Analogue, the normal of the Elas-

tica performs pendulum oscillations on each side of a perpen-

dicular to the line of stress, as the point on the curve moves

with a constant velocity.
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For, when the normal has turned through an angle 6, the

1 de y
curvature - = -^= =%

;

p as c^

and by diflFerentiation

ds^ c^ ds c^ ' •

which agrees with the equation of pendulum motion

d^e/dt^ = - nhin 6, if s/c= nt.

Corresponding with the oscillating pendulum we have the

undulating Elastica, intersecting the line of stress at an angle

a ; and thus, writing s/c for nt in § 8,

sin J0= K sn s/c, cos |0= dn s/c,

sin = — dy/ds= 2k sn s/c dn s/c,

so that y = 2ck en s/c,

measuring s from the point A, at a maximum distance from the

line of thrust ; and a graduated bow might thus be employed

for giving mechanically the numerical values of the en function.

In the nodal Elastica corresponding with the revolving

pendulum,
6= 2 am s/ck, sin = 2 sn s/ck en s/ck= — dy/ds

;

so that y= 2{c/k) dn s/ck.

In the separating case, /c= 1, and y= 2c sech s/c ; and

^0= amh s/c, sin ^6= tanh s/c, tan ^6 = sinh s/c, etc.

In the undulating Elastica

-1- = cos = ^(1 — 4/c^ sn%/c dn%/c) = 1 — 2An^s/c

;

and in the nodal Elastica

-J-
= cos 6= „/(! — 4 su^s/c cn^s/c) =1 — 2 sn^s/c

;

cos

so that X is given in terms of s by means of elliptic integrals

of the second kind (§ 77).

A great simplification is introduced when k= k'= \,J2 ; the

Elastica now cuts the line of thrust at right angles, and

cos Q = ci\^s/c = ^y^/c^,

which shows that this Elastica is the roulette of the centre of

a rectangular hyperbola, rolling on the line of thrust.

It is easily proved that in this curve the radius of curvature

p is half the normal P6 ; also that a chain can hang in this

curve as a catenary, provided the linear density is proportional

to (nc s/cY; this is left as an exercise for the student.
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When K = 0, the undulating Elastica corresponds with small

oscillations of the pendulum, and the Elastica is ultimately

coincident with the line of thrust, the ordinate y varying

as sin s/c or sina;/c; and then the length of the beam,

wc = 'ir,J{BjT), is the extreme length at which the straight

form of the beam begins to become unstable under the

thrust T.

The nodal Elastica becomes practically a circle when k — 0,

corresponding in KirchhofF's Kinetic Analogue to the practi-

cally uniform revolutions of a pendulum when the velocity is

indefinitely increased.

The Elastica is also called Bernoulli's Lintearia, being the

cross section of a horizontal flexible watertight cylinder, when
filled with water, the free surface of which lies in the line of

thrust Ox; for if t denotes the constant circumferential tension,

t/p= wy, the pressure of the water,

or yp = tjw= c^.

It is also the profile of the surface of water drawn up by

Capillary Attraction between two parallel plates (Maxwell,

Encyclopaedia Britannica, Capillary Action).

The student may prove, as an exercise, as in § 80, that if the

wire is bent into a tortuous curve by balancing forces and

couples at its ends, it will assume the form of a curve in a

surface of revolution defined bj^ an equation of the form

2/2+ s;2= a^cn\sjc)+ bh}i^(s/c).

(Froc. London Math. Society, vol. XVIII.)

98. Problem VII. Sumner Lines on Mercator's Chart.

Sumner Lines, so called after Captain Sumner, of Boston,

Massachusetts, are the projections on Mercator's chart of

small circles on a sphere; if simultaneous observations are

taken of the chronometer and of the altitude of the sun or a

star, the observer knows that he must lie on a small circle

having its pole where the Sun or star at that instant was in

the zenith, and having an angular radius the complement of

the observed altitude; and two such observations are em-

ployed in Sumner's Method for determining the ship's place.

According as the observed altitude of the Sun or the star is

greater or less than the declination, the small circle on the
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Earth does not or does enclose the polar axis; and the cor-

responding Sumner line will be a closed or open curve, whose

equation may be thrown into the form

cosh yjc = sec a cos xjc, (i.)

or sinh 2//c = tan ,8 cos cc/c (ii.)

On Mercator's chart (§ 16) the latitude and the longitude

^ of a point whose coordinates are x, y may be written

^= xlc, 6= B.m'hy/c,

where ttc/ISO is the length on the chart of a degree of longitude

at the equator.

These relations are obtained by noticing that the bearing by

compass of two adjacent points on the chart will be the same

as on the terrestrial sphere, if

dy _ do
dx cos 9d(p'

and now, if x= C(p, so as to make the meridians of longitude

equidistant parallel straight lines, then

dy/dO= c sec 6, y/c =Jsec 6d9,

or (§16) 9= a.mh y/c.

Now let S denote the declination of the Sun or star, y the

observed altitude, the difi'erence of longitude of the observer

and of the object ; then in the spherical triangle SPZ
PS=iTr-S, SZ=iTr-a, PZ=^Tr-9, SPZ=4>,

S denoting the Sun or star, Z the zenith of the observer, and

P the pole of the Earth's axis.

Since cos 8Z= cos PS cosPZ+ sin P8 sin PZ cos SPZ,
therefore sin a= sin (5 sin 9+ cos S cos 9 cos <p,

or cos S cos ^= sin a sec 9— sin S tan 9

= sin a cosh y/c— sin S sinh y/c

;

and according as a is greater or less than S, this is reducible to

the form Acos'h(y — b)/c or —Bsm'h{y— h)/c; and this again

by a change of axes to the form of (i.) or (ii.).

(Crelle, XL, Gudermann, on the Loxodrome ; Messenger of
Mathematics, XVI. and XX., Swmner Lines.)

Differentiating equation (i.) with respect to x,

dy_— sec a sin x/c_ — sec a sin x/c

dx sinh y/c ~ ^(sec^a cos^x/c— 1)'

ds tang sing

dx~ y/{sec^a cos^x/c— l)~ ^(sin^g— sin^aj/c)

'
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SO that, as in §§ 3, 4, and 8,

sin x/c= K sn s/c, cos x/c— dn s/c,

cosh y/c= sin a dn s/c, sinh y/c= tan a en sjc,

the modular angle being a.

This shows that s/c in the closed Sumner Line (i.) may be

equated to nt in the oscillating pendulum, and then x/c will be

half the angle made by the pendulum with the vertical; also

in the Sumner Line

cosi/r= -j- = cn.s/c, or \fr= a.msjc,

the intrinsic equation ; and p = c sin a sec x/c.

The differentiation of equation (ii.) gives in a similar manner

ds _ 1

dx ^{l — siD^^sin^x/c)'

so that x/c = am s/c, with mod. angle /3 ;

and now, in the corresponding undulating Sumner Line, xjc is

half the angle made with the vertical by a revolving pendulum,

if we put s/c= KTit.

/7/vj

Also cos >/f= -T—= dn s/c = (en Ks/c, 1/k)

by § 29 ; so that \/r= am(Ks/c, 1/k),

the intrinsic equation ; and p = c cosec j8 sec x/c.

Fig. 10.

The second curve, by a shift of origin a distance ^ttC to the

right, becomes sinh y/c= tan /3 sin x/c,

and then it cuts at right angles the first curve (fig. 10)

cosh y/c = sec a cos x/c.
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For, differentiating these equations logarithmically,

coth^ ^= cot--
c ax C

. , y dy ^ X
tanh- T-=— tan-;

c dx c
'

and therefore the product of the -^'s is — 1.

In fact putting see a = coth a, the curves are derivable as

conjugate functions from the equation

x+ iy = G amh(a'

+

ij3).

99. Problem VIII. Catenaries.

" The catenary for a line density proportional to cosh s/a,

where s is the length of the arc measured from the lowest

point, is of the form

tanh y/b = dn x/a, or dn x/b,

according as a, the ratio of the tension in pounds to the density

in lb. per foot at the lowest point of the catenary is greater

or less than b ; the Catenary of Uniform Strength being the

curve in the separating case of a = b."

The equation of the Catenary of Uniform Strength, in

which the linear density or Cross section is so arranged as to

be proportional to the tension, is well known (Thomson and

Tait, Natural Philosophy, § 683) being

e^/^'cos x/b = 1, or e^l'' = sec x/b
;

or as it may be written

tanh ^y/b = tAn^xjb.

For if a-g denotes the density in lb. per foot, and a-^b the

tension in pounds at the lowest point A, a the density and -

crb the tension at any other point P, at a distance s from A,

measured along the curve, the equations of equilibrium of

AP are

ab cos i/r = a-Jb, crb sin \fr =J'ads.

Thence cr= o-qScc i/r, s^nAjads = a-fi tan i/^

;

so that 0"= iTfp sec^xp-dyjy/ds = o-qSCC i/r,

or ds/d\ff= b sec \fr,

s =fb sec i/^cZi/r = 6 cosh " isec </<- = & cosh ~
V/cto,

<7 = cTgCOsh s\b.
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We might therefore take a piece of uniform flexible and
inextensible material, cut out from a plane piece by two
catenaries, or modified catenaries, say y/o= ±coshx/b, and
hang it up in a catenary of equal strength.

Also X =Jcos \f/-ds =ybd\p- = 61/r,

y =ysin yp-ds =fh tan y^rd-^= b log sec \ff ;

so that y/b = log sec x/b, or e^/' = sec x/b,

the equation of the Catenary of Uniform Strength.

But now suppose two supports at the same level to be made
to approach or recede from each other ; the piece of cloth or

the chain will hang in a difierent catenary.

Denoting by a-(,a the tension in pounds at the lowest point

A, and by t the tension at P, then

t cos i/r = a-ga, t sin ^ =ja-ds = a-^b sinh ajb
;

so that 50 or ^ = tan\//-= -sinhr,^ dx ^ a b

the intrinsic equation of the curve.

_ r abdp

anellipticintegral, oftheform(lO), p. 33; and putting 23 = tam/r,

d\lr_ //cos^t/t sin^\/r\

dx~yj\^^~^)'
In the separating case, a = b; and then x= b\lr, as in the

Catenary of Uniform Strength ; the greatest possible span of

a catenary of given material is therefore ttS = ttt/'M^, where t
denotes the tenacity of the material, in pounds per sq. foot,

and ^t; the density or heaviness, in lb. per cubic foot.

But with a > 6,

-^= j^^{].—K^coB^\lA) = ji:^{^Tr+ylr, k), where K'= b/a;

so that ^TT+ ^i'= am x/b,

1 dy
, ,

en x/b
and ~= tau\ly^ L'

dx ^ sn x/b

r—cnx/bsxix/b ^ f—Khnx/bsrix/b ^ 7, , n /,

M = / i—
7T

—

—dx= / —=

—

-, ' „ ,, dx= tanh - idn cc/o,
^ y sn^x/b J 1— dn^tc/o '

'

or tanh2//f) = dna;/&.
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With a < 6,

^= -V(l-/c'sinV)= -A(\^, k), where K' = a/b;

so that \Jr= am x/a,

r.^A % i. , sn x/a
and ^= tan\/f= '-i-,

ax ^ en a;/a

/sn flj/a en a;/a , _ rAn x/a en cc/a ,

en^ic/a ^ dn^x/a—K^

ct , dna;/a+/ , ^, idnaj/a

2k °(hix/a— K K
f

or tanh y/h = -, ;- = dn(K— x/a),
^' an x/a ^ ' '

^y § 57 ; so that by a change of origin, taking the axis of y in

a vertical asymptote of the curve, its equation may be written

tanh yfh = dn x/a.

(Compare Cayley, on A Torse defending on Elliptic Func-

tions, Q. J. M., XIV., p. 241.)

100. In the catenary formed by an elastic rope or flexible

wire, obeying Hooke's Law " ut tensio sic vis," we may still

have p= sinh u ; but u is no longer proportional to the arc s.

We use o-Q to denote the uniform density of the rope when
unstretched, and s^ to denote the length of rope which stretches

in AP to length s, a-^b denotes as before the tension in pounds

of the rope at the lowest point A, and a-gC is used to denote the

modulus of elasticity of the rope in pounds ; so that, by

Hooke's law, .=—= 1 -| .

asg (TqC

Then, as before, for the equilibrium of AP,

t cos
yf/-
= a-ga, t sin i/' ^fuAs= &gSg,

so that p=^= ^A=siDhu,
ax b

if we put Sg= a sinh u
;

and then t= (Tg^{a^+V)= '^o^ cosh u.

Then £= (l+^c)£=--^-+?-^^--

and -p= ^(l+p2) = coshu.
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so that = (J
+_ cosh u,

du c

~-r- = a sinh u-\— cosh u sinh u.
du c

Integrating, putting ajc= h,

s/a= sinh u+ |A(u+ cosh % sinh u),

xja= u+ ^sinhtt,

y/a= cosh u+ ^i sinh^tt.

For the corresponding points on the rope, when it is supposed

inextensible, putting c — 00, and h= 0,

sja= smhu, xja = u, yJa= cosh u,

giving an ordinary catenary ; so that the tangents are parallel

at corresponding points of the catenaries of the elastic and of

the inextensible rope.

The terms depending on h, considered separately, define an

ordinary parabola ; so that the catenary formed by an elastic

rope is something intermediate to a parabola and a common
catenary.

101. Problem IX. Geodesies.

" Investigation of the geodesies on the Catenoid, the surface

formed by the revolution of a catenary round its directrix, and

on the Helicoid, into which it can be developed ; also of the

geodesies on the JJnduloid and Nodoid, the capillary surfaces

of revolution, of which the meridian curves are the roulette

of the focus of a conic section, an ellipse or hyperbola, rolling

upon the axis of revolution."

The simplest mode of determining a geodesic on a surface of

revolution is to treat it as the path of a particle ' moving

under no forces on the surface, considered as smooth, so that

dsjdt is constant ; and then, since the reaction of the surface

passes through the axis, rHO/dt is constant ; and therefore

dO
r^^- = 6, a constant,
ds

r and 6 denoting the polar coordinates of any point of the

projection on a plane perpendicular to the axis Ox ; and thus

ds^ _dx^ dr^ 2_!]!
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In the catenoid rja= cosh xja,

n/¥* Ii'r ~~~ Co)
so that -^ = sinh x/a= ^^-^^

;

ax ' a

and therefore, in the geodesic,

r^— a^ dr^ dr^ i2_ '

or
de^ b^

We must distinguish the two cases according as 6^ < a^.

When b^>a^, then r^>b^; the geodesic osculates the circular

cross section of radius b ; and we have

r sn = 6, with k= a/b,

as the polar equation of the projection of the geodesic.

When &' < a^, then r^>a^; the geodesic crosses the circular

section of minimum radius a ; and supposing it cuts the

meridian here at an angle a, 6 = a sin a ; and now
r sn(0//c) = a, the modular angle being a.

In the separating case, & = a and /c= 1 ; and then sn9= tanh0;

so that r tanh 6= a

is now the polar equation of the projection of the geodesic, a

curve having r= a as an asymptotic circle.

Generally in any geodesic on a surface of revolution, which

cuts the meridian curve at a distance r from the axis at an

1
. dd b

angle X, smx=r^=-;

so that sin x varies inversely as ?'.

102. Now suppose the catenoid is divided along a meridian

curve AP, and again along the smallest circular section AA',

and that this section AA' is drawn out into a straight line, of

length 2xa ; the rest of the surface, if flexible and inextensible,

will assume the form of a Helicoid, or uniform screw surface

of pitch a, such that its equation is

z= a(p,

taking the axis of z along the axis of the surface, and p, <p the

polar coordinates of the projection of a point on a plane per-

pendicular to the axis ; and AP will become a generating line

of the Helicoid ; this is proved geometrically, by noticing that

the length of the helix PP' on the Helicoid is equal to the

length of the circle PP' on the Catenoid.
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The surface being inextensible, and a circular cross section

of the Catenoid becoming a helix on the Helicoid, it follows that

and since t^= p^-\- a^, therefore Q= (j>.

P = -

Fig. II.

Therefore the equation of the projection of a geodesic on the

helicoid is either of the forms

{p^+ aP-)sn\<t>lK) = a\

ptn{<p/K) = a;

or (p2+ ci')sn2^ = 62=aV,
adn^
Ksn<j)'

p cn(K— (f))
= uk'/k.

The Catenoid is the surface of revolution formed by a

capillary soap bubble film, when the pressure of the air is the

same on both sides of the film. The surface is easily formed

practically by dipping a circular wire into soapy water and

raising it vertically ; and it is evident from mechanical con-

siderations that the surface is a minimwni surface (§ 31).

The Helicoid, into which the Catenoid can be deformed, can

be produced in the same manner by a film between two coaxial

helical wires of the same pitch (C. V. Boys, Soa-p Bubbles).
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These surfaces are particular cases of Scherk's minimum
surface, whose equation is

z = atan-ig+ atan-\%; „ ; % , „(+ &taiih-i%; .
, .,

,
L

or

reducing to the Catenoid when a= 0, and to the Helicoid

when 6 = 0.

The verification in the manner of § 32 is left as an exercise

for the student.

103. The meridian curve of the Catenoid is the roulette AP
of the focus of a parabola aG, the pressure of the air being the

same on, both sides of the film (fig. 12).

But when the pressure of the air inside the film is increased

or diminished, we find that the surface of revolution formed

by the capillary film has as meridian curve BP or GP, the

roulette of the focus of an ellipse or hyperbola, the first surface

being called the Unduloid and the second the Nodoid.

(Maxwell, Capillary Attraction, Encyclopcedia Britannica.)

Denoting by y, y' the perpendiculars from the foci P, P' on

the axis Ox on which the conic rolls, then in the Unduloid

BP, generated by the focus P of a rolling ellipse bQ,

y+ y'= {PQ+ QP')cos yj^= 2a cos ^,
and yy'= b^

;

so that b^+ y^= 2ay cos \fr.

If in the meridian curve BP of the Unduloid, we denote

the radius of curvature by p, and the normal PGhj n, then,

since b^+ y^= 2ay cos t/<-= 2ay^ln,

therefore -= ^—=+ jr-

;

n 2ay^ 2a

b^ V
and since cos i/r= -—+ -f-,

2ay 2a

difierentiating,
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or

Fig. 12.

lay'- 2a.

'

n p a,

Then, if 'p denotes the excess over the atmospheric pressure

of the air inside a capillary film, in the shape of an Unduloid,

and t the tension of the film,

so that

P
1

V \n p/ a

so that, if inside a Catenoid, the pressure is increased, the

surface is changed into an Unduloid.

If the pressure is slightly diminished by p, the surface be-

comes a portion of a Nodoid GP ; for now

p = tfl-l\
\p n)

and in the meridian curve CF of the Nodoid, the roulette of

the focus P of a hyperbola cR with foci P and P",

y"-y = {P"R- PP)cos i/r= 2a cos i/r, and yy'=¥
;

so that h^— y'^= 2ay cos yp-= ^ay'^jn :

1^J2 j^
n 2ay^ 2a'

1_ J2^ 1

p- 2^2/2+'

and p = t/a.

2a



100 ILLUSTRATIONS OF

In the geodesic on the Unduloid,

y^dO/ds= a sin y,

supposing the geodesic cuts the meridian curve at an angle y
at its maximum distance a from the axis; also a= a(l + e), and

the minimum distance /3= a(l — e), so that a^= b^, a+ /3=2a;

and y lies between a and ^.

Now, in the projection of the geodesic on a plane perpen-

dicular to Ox, writing r for y, so that tan i/r= dy/dx= dr/dx,

ds^ dv? ,
dr''

,
„ dr'- , , , ,

'^

:7B2= ;75-2+ ;732+ ^'

=

;m2 cosecV+ ^'=

-

or VTT,= r^sin^i/rl -^-^-s 1 )

;

' ^ \a''sin''y /

dd^ de^^de^^ cl,02--'^'--Y > a2sin2y'

dr^

dd^~ '
"''"' '^ Va^sin^y

and r cos \fr= (b^+r^)12a; so that

de^ 1 4a2 iVa^in^y /

_ (a^— r^)(r^— I3^)(r^— a^sin^y)
.

a\a+ /3ysin^y
'

leading to integrals of the form (72) and (73), p. 52.

We suppose first that /3 > a sin y, so that the geodesic crosses

the minimum section of the surface, and therefore all the

sections if produced ; and now with a > r > /3 > a sin y, we
have, according to equation (72),

1 cn^m0
,
sn^m0

o^ "2=—2- + '^3r--^2 ^2 ^2

Secondly, if a > r > a sin y > /3, then the geodesic osculates

the circle of radius asiny, and is limited by the convex part

of the surface between two such circles ; and the equation of

the projection of the geodesic is obtained from the above

merely by interchanging a sin y and j8.

In the separating case a sin y= /8 ; and then k = 1, m= tan ^y

;

and the polar equation of the projection of the geodesic is

1 _sech^m0
,
tanhVi,0

a curve having an asymptotic circle y= /3.

The formulas are similar for the geodesies on the Nodoid.
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104. Euler's Equations resumed. Poinsot's Geometrical

Representation of the Motion of a Body under No Forces.

We now resume these equations of motion, of which the

solution by elliptic functions has been indicated in § 32.

By the Principle ofthe Conservation of Angular Momentum
(Routh, Rigid Dynarnics, Chap. IX.) the axis 00 of the re-

sultant angular momentum G will be fixed in space ; and the

direction cosines of this axis with respect to the principal

axes of the body being

Ap/G, BqjQ, Or/G,

the component angular velocity about 00 will be

Ap^+Bq^+Or^ T , .

-^ ^2—^ — ^,& constant,

where, as before, T denotes twice the kinetic energy of the body.

It is convenient to denote this component of angular velocity

about OC by a single letter, say /x; and also to replace G and T
by Dix and Dfj.\ making TjG= ix and G^IT= D; and then D will

be a constant quantity, of the same dimensions as A, B, 0.

If / denotes the moment of inertia about the instantaneous

axis of rotation OP, and if OP denotes the vector of the

momental ellipsoid at 0, then /varies as OP'^, so that we may
put I=I)h^/OP^, where his a, new constant length.

Now, if CO denotes the resultant angular velocity about OP,

T=Iw\ or Dfi.^= Dh^u>^IOP\

so that the angular velocity w varies as OP ; and

h_OP_x_y _z
IX w p q r

The direction cosines of the normal of the momental ellipsoid

at P being proportional to Ax, By, Gz, or Ap, Bq, Cr, are

therefore ApjG, Bq/G, Cr/G ; so that OC, the axis of G, is

perpendicular to the tangent plane at P ; and if 00 meets this

tangent plane in C, it follows that 00=h, so that the tangent

plane at P is a fixed plane ; and during the motion the

momental ellipsoid rolls on this fixed plane, called the in-

variable plane, with angular velocity proportional to OP.

The curve traced out by the point of contact P on the

momental ellipsoid is called the polhode, and the curve traced

out by P on the invariable plane is called the herpolhode

;
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these names are due to Poinsot, as well as this geometrical

representation of the motion.

(Theorie nouvelle de la rotation des corps, Paris, 1852.)

The equation of the momental ellipsoid may now be written

while Ax/Dh, By/Dh, GzjDh are the direction cosines of the

invariable line OG ; so that

AV+BY+CV= 1)%^

The polhode is therefore the curve of intersection of these

two coaxial quadric surfaces, and therefore lies on the cone

A(A-D)x''+B{B-D)y^+G(G-I))z^= 0,

called the polhode cone ; and the projections of the polhode

on the principal planes are therefore

(A - B)By^+{A-G) Gz^= (A- D)I)h\ ....

105. Denoting by v the component angular velocity of the

body about the axis OH, where OH is equal and parallel to GP,

Ap^+ B(f+ Cr^= T =Dtj?,

^y+5Y+cv= (?2=_D2^2

.

and, by solution of these equations,

A-B.A-G
^ Aj_l\7T G^

2 2-^ p^= „2_ (^+ _^jy___ =
ft,2
_ ^_^2^ suppose,

or = v^+{l~'^\l--QJ ij?=i^- vi, suppose

;

^^^'--H-gX-S"-^-"'
C ) '

and in these equations we may replace p, q, r, w, fx, v by

X, y, z, OP, h, p, respectively, where p'^= OP^— h-.

Example.—Prove that

and simplify

(dpV fdqV, fdry
\dt J ^ \dt) ^ \dt)
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106. On the supposition that

AT> BT>6^>CT, or A>B>D>C,
r never vanishes, and the polhode encloses the principal axis C;

but p and q alternately vanish, so that v'^ oscillates in value

Ifweput ^= (§-l){(l-^)co3.9+(l-§)sin.#},

then Ap^^Lfi^^tl^cos^e,

We now find, on substituting in one of Euler's equations,

de^
J. ^

A-G. B-G(A-D 2. ,5-i) . „„\

the solution of which is of the form, as before in §§ 18 and 32,

Q= &m{nt, k),

. „ ^ „A-D.B-C
T „ A-B.D-C

where n^= D^^ ^^^, , and >c-=^_j.^_g.

the anharmonic ratio of A, B, JD, C; while

Ap^= Dfx.\—^ cn^nt,

Bq'' = Df.'^^sn^nt,

giving (§ 32)

~A.A-G^' ^ "B.B-a^' ~C.A-C'^-

107. Quadrantal Oscillations.

The oscillations given by a differential equation of the form

d^d/df=-mhinecose

are called quadrantal oscillations (Thomson and Tait, Natural

Philosophy, § 322), the system having two positions of stable
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equilibrium given hj 6= and 6= -7r, and two unstable posi-

tions in the remaining quadrants, given by 6=±^7r; for

instance, an elongated piece of soft iron in a uniform magnetic

field, or an elliptic cylinder moveable about its axis in a cur-

rent of liquid performs quadrantal oscillations. (Q. J. M., xvi.)

When the system performs complete revolutions, the solu-

tion is (§ 18) 6= a,m(mtlK, k);

but if it oscillates about the positions of stable equilibrium,

given by = 0, the solution is (§ 29)

6= am(m4 I/k),

or cos 6= dn(mi//c, k),

sind= K sn(m<//c, k),

where k is less than unity.

The second solution will apply to the second state of motion

in § 32, where AT>G^>BT>CT, or A>D>B>C, and where

p never vanishes, and the polhode encloses the principal axis A

.

108. Differentiating the equations of §105 with respect to t,

clw_ dv A-B.A-G dp_B-C.B~A dq_ G-A.C-B dr

'^dt~''dt~ BG ^dt GA ^dt~ AB '^dt

B-G.G-A.A-B=
ABC P^"-'

du?

so that o).^ and v^ are elliptic functions of t, of the form given

by equation (15), p. 36.

But, on reference to equation (A), p. 43, we see that

if Ba, ej, Cc denote the roots of 4!S^—g^s—g^= 0; so that on

comparison we may make

proportional to fv>— ea, fu— Cb, jaw— e^;

or, symmetrically, we can put

Af=-m\B-G){fw-e^),
B<f=-m\G-A){'pu-eb),
Gr'-= -m\A - B)(pu- e,)

;

where the factor - m? is introduced for the sake of homogeneity,
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on being of the dimensions of an angular velocity, such as p, q,

r, (D, fi, v; and now, on substitution in Euler's equations,

du^ B-G.G-A.A-B , (B-G G-A A-B\ , „

suppose ; so that u= a constant ±7ii.

109. As in § 32, we take A>B>C; and then

(i.)when AT>BT>G^>GT, ox A>B>D>G,
r never vanishes, and we must take

e<!>e<i>J3ti>e6;

so that fij= Cc, ^2= e^, 63= e^

;

(ii.)when AT>G^>BT>GT, or A>B>B>G,
p never vanishes ; and then

ea.>ec>pu>ei;

and we must take e^= e^, e^= e^, e^ = e^.

Since ^u oscillates between e^ and e^, and is taken

initially equal to e^, we find, oa reference to equation (42),

p. 45, that we must put

u = 2w-,^+ oog— nt,

so that the constant of integration for u in § 108 is 2a)^+ Wy

Now, at the cost of symmetry, to get rid of the imaginary

0)3, and to make the argument of the elliptic functions a real

quantity nt, equation (42), expressed in the direct notation,

e

e, — &nt . e„— e»
pM,-e,=J

—

^—.— -,
" ' fnt— £3

" ^ fnt— 63

and gj always replaces e^, while e^ replaces e^, fie replaces e^, or

vice versa, according as the polhode encloses A or G.

110. For the determination of e„, ej, e^, we have the equations

ea+ 66+ «c= 0,

{B-G)e^+ {G-A)e,+ (A-B)e,= T/m''= Df,ym\

A(B- G)ea+B{G-A)e,+ G{A - B)e,= O^jw?=DV/»^'>

whence AT- G^ =m\G -A){A- £)(e„- e,),

BT- G^ = m2(^ - B)iB - C')(e, - ej,

CT-G2=m2(5-(7)(6'-^)(e„-e6);
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m^ U—A.A—B
_DiuL^ B-D
m^ A-B.B-C

_Dfi.^ G-JD
'^^

m^ B-G.C-A'
so that Bc— ea is taken positive or negative, according as

BT—G^ or B—D is positive or negative; while ej— e,, and

fift— ea are always negative, as explained above.

Also (ea-eh)-{c,- c'„) = Se^, • •

,

whence the values of e^, e^,, e^.

Then g^= ^(e,-e,y+ ie,-e,f+{e,-eif}
can be found ; and the discriminant (§ 53)

A = 16Ce6-e,)2(e„-eJ2(e^_ej)2

_ ,
^
Jyi^ (^ - I))%B-D)\G-Df
m}^ {B-G)^{G-AY{A-B)^'

j_gi_ {{B-G)HA-Bf+{G-A)\B-D)H{A-Bf(C-Df}^
A lQ%(B-G)\G-A)\A-Bf{A-D)\B-D)\G-Df '

111. We have supposed no forces to act; but the case in

which the impressed couple is always parallel and proportional

to the resultant angular momentum leads to equations which

can be solved in a similar manner ; in this way we imitate the

motion of a body, like the Earth, which is cooling and con-

tracting uniformly.

Now, the component impressed couples about the principal

axes being of the form XAp, \Bq, XGr,

A{dp/dt)-{B-G)qr= XAp, ...

,

which, on putting 23 = 6"'''^', and Xi'= l — e"^', reduce to

A^-{B-G)qV= 0,...,

so that p', q', r' are the same functions of t', which p, q, r would

be of t, in the case where no forces act.

In the case of the cooling and contracting body, we put

A=e-'^'AQ, B= e-'^'Bg, G=e-'^'-G^; and the equations become

A,^,-{B,-G,)qT= 0,...,

which are solved as before ; and Poinsot's geometrical repre-

sentation of the motion still holds, with slight modification.
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A similar procedure will solve tlie following theorem

:

" A rigid body is moving under the action of a force whose

direction and magnitude are constant, always passing through

the centre of inertia {e.g. gravity), and of an absolutely con-

stant couple.

" If p, q, r denote the component angular velocities about the

principal axes at the centre of inertia, and if u, v, iv denote the

compound velocities of the centre of inertia along the principal

axes at the time t ; then the determination of

p/t, q/t, r/t, u/t, v/t, w/t,

in terms of ^t^ is the same as that of p, q, r, ii, v, w, in terms

of t, when no forces act; t being reckoned from the commence-

ment of the motion." (W. Burnside, Math. Tripos, 1881.)

112. To obtain the equation of the herpolhode, we notice

that during the motion the polhode cone, fixed in the body, rolls

on the herpolhode cone, fixed in space, being the common
vertex ; corresponding areas of these cones are therefore equal,

as also their projections on any fixed plane, for instance the

invariable plane.

Therefore if p, <p denote with respect to C the polar co-

ordinates of P on the herpolhode,

' dt DhVclt dtJ^DhVdt dtJ^DhVdt ^ dt)'

Since ^=^=?=e = ^-,

-p q T V fx.

,T_ n dx U.B—G
therefore -rr= r—-.

—y^<
dt h A ^

and (§104)2/^-z£=l[-^xy^--^ ,r.-j = —^^j-^hx,

so that
P'tt = {-BG~^''+lJjr^y+^B^'>

_ {A-D)AV-K^-D)BY+ (g- -P) g'g'

ABC '"

, A-D.B-D.C-D,^
= ^'^+ AW ^'^'^

which, combined with the value of dv^ldt or dp^jdt of § 108,

^dt
^ ~ A"^^^

^"^~ '''

'

^"^~ ^'
'

^'' ~ '''^'

will determine the equation of the herpolhode.

P'-
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113. Using Weierstrass's functions of § 108,

m?(B-G, .,G-A. ^,^--B, .n^m'\

= —2(&'"-9i^)>

B-G
,
G-A A-B _jI

... A ^"^ B ^""^ G ^^ m?
with <av—

;^ B-G G-A A-B
A ^ B ^ G

and then jaii— eo=^f 1 — -^jfTf— l), (positive),

jxV, I)\fD
^^~ ^^

""
i^l^l ~g)\A~'^)'

(P°^i*i"^®)'

F^- ec= ^^(l -
3)(5

-
1)' (negative),

<p'H= ^<pv-ea){'pv-eb){(pv-ec)

^_ajI {A-D)\B-Df{G-Df .

and, since e^ (or fie) > jsi^ > 63 (or e^),

we must, by (39), § 54, where i' is a proper fraction, take

V = U3-^^+ fwg.

Therefore ^= ^+n^^^,
at pv— pu

or j^=-+ ^ 'du n fv — fu

and, integrating, ch = u.t+ \il-^ ,

and we are thus introduced to a new integral, called an

elliptic integral of the third kind.

The cone described in the body by OH (§ 105) is called by

Poinsot the rolling and sliding cone ; during the motion this

cone rolls on an invariable plane through 0, while at the same

time this plane turns with constant angular velocity yu about

OG ; so that, if p, 0' denote with respect to the polar co-

ordinates of H on this plane,

, 1 . r<o'vdu

J fV— fU
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114. With the notation of the elliptic functions of Jacobi,

as in § 106,

A-D.D-G D.A-B.D-C ^ ,=
AG AW ^^^*'

which can be thrown into the form

^

^

A-D D-Ĝ
^ _ ^^^^^^ ^^^nt)

h^ AG

on putting K''sn''a= -j- . _jy
' DB-G

,
G B-D , 2 AB-B

'^ *=£ ^iro' ^^ ''^ -B D^' ^'^ "^B Z=^-

With Co,= e^, ei= e^, e<,= e^, and v= w^+ t'w^, then by (32), p. 44,

J{e^-e^)v= K+t'iK';

and An\K+ t'iK') = f^^^^=^^ = ^'^'
^

ipv— ei B A—D
so that a= K+t'iK'.

^^^^ dt~^ B 1-An2asn%i

_ _'icnadna. ii^

^ sua 1 — K^sn^a sn^nt'

and, writing ti for nt,

_ , _i sn a dm. a r du
^ sna yi — K^,

icnadna . /'An a en a dn a sn^w
, t en (X dn a . /'An a ci

= ui u— %1 —

^

'^ sna J 1 — /ĉ sn^a sn%
du.

the last term an elliptic integral of the third kind, in the form

employed by Jacobi.

On putting snu= sin d, and sn a= sin a, Khn^a= -m, then

.cos gAg /- <^0

•^ = /"^" * sin ay (1 +m sin20)V(l - Ain'^e)'

the third elliptic integral, as employed by Legendre
;

the

further discussion of this integral must be reserved for a

subsequent chapter.
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Examples.

1. Prove that, if the excentric anomaly in an undisturbed

planetary orbit of excentricity e is represented by 2 am(ii, e),

the mean anomaly is

„ ,
„d^amu2amu+ 2— , „ •

edu^

2. Prove that the envelope of the straight line rays

k'^x snu+ {cnu+ K dn ii)y = KSii u(dn u+k en u)

where u is the variable parameter, is the curve

the caustic of parallel rays, after refraction at a circle, of

refractive index 1/k ; and find the order of this curve.

(Cayley, Phil. Trans., 1857, " Caustics.")

3. Prove that a portion of a flexible inextensible spherical

surface of radius a, bounded by two meridians (a lune, or gore

of a spherical balloon) can be bent into the surface of revolu-

tioa given by

x= acos6cos{(j)/K), y = acosdsin((p/K), z= aE(6, k);

6, <j> denoting the latitude and longitude of the point on the

sphere.

Explain the geometrical theory, distinguishing the cases of

/c < 1, and K>1.

4. Denoting by u> the solid angle subtended by a circle of

radius a at a point whose cylindrical coordinates are r, z with

respect to the axis of the circle, prove that

dw_ az if_„

da 2(ar)i k^

where ^=-^77

—

r-\v i^ = i i ) r^-z^+{a+Ty z^+{a+Tf

Show how to determine the illumination at any point of the

surface of the water at the bottom of a deep well, due to the

light from the sky.
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5. A uniform circular wire, charged with — e coulombs, is

presented symmetrically to a fixed insulated sphere of radius

a centimetres, so that every point of the wire is at a distance

/ cm from the centre of the sphere, the radius of the wire sub-

tending an angle a at the centre of the sphere.

Prove that the electricity, in coulombs per cm^, induced at a

point of the sphere whose angular distance from the axis of

symmetry is 6, is given by

f-a^ E
^ 2,r2a {a^-2afcos(d-a)+f}y/{a^-mfcos(6+a)+fy

, g_ 4(x/sinasin6
,^_ o.^— 2a/cos(0— a) +/^

'^^
" ~a^-2afcos{d+a)+p' " ~a'-2afcos{d+a)+f'

6. Prove that if this sphere and wire gravitate to each other,

and if the wire is free to turn about a fixed diameter perpen-

dicular to the line joining the centres, the wire will be in stable

equilibrium when its plane passes through the centre of the

sphere ; and prove that the oscillations of the wire due to the

gravitation will synchronize with a pendulum of length

where b denotes the radius of the wire, c the distance between

the centres of the sphere and wire in cm, M the weight of the

sphere in g, G the gravitation constant ; and

where K^= 4<bc/{b+ c)^.

Determine the position of stable equilibrium and the length

of the equivalent pendulum, when the attraction is changed to

repulsion.

7. Two uniform concentric circular wires of radii b and c cm,

weighing If and M'g, are freely moveable about a common fixed

diameter. Prove that in consequence of their gravitation, the

oscillations will synchronize with a pendulum of length

n-b^Hb+ c)

GF{Mb^+M'cY

where F and k have the same values as before.



CHAPTER IV.

THE ADDITION THEOREM FOR ELLIPTIC
FUNCTIONS.

115. So far we have considered the elliptic functions of a

single argument u ; but now we have to determine the for-

mulas which give the elliptic functions of the sum or difference,

u±v,oi tvo arguments u and v, in terms of the elliptic functions

of u and v ; and thence generally the formulas for the elliptic

functions of the sum of any number of arguments u+v+w+...;
and the formulas for the duplication, triplication, etc., of the

argument.

The Addition Theorem for Circular and Hyperbolic

Functions.

The analogous formulas in Trigonometry for the Circular

Functions are well known, namely,

sin('ii± v)= sin u cos v ± cos u sin v,

cos(u ± v) = cos u cos V + sin u sin v

;

or, as they may be written,

sin(u+v) = sin u sin'-u+ sin'u sin v,

cos(u±v) = cos u cos V + cos'u cos'v

;

the accents denoting differentiation ; and to these may be added

, , , , tanultan-y
tan it± v) = -—

;l+tanutanv

these formulas constituting the Addition Theorem for the

Circular Functions.

For the Hyperbolic Functions, the formulas are

cosh('ii±v) — cosh u cosh v± sinh u sinh v,

sinh(u±v) = sinh u cosh v

+

cosh u sinh v
;

112
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or, as they may be written,

cosh(u±v) = cosh u cosh i;± cosh'u cosh'v,

sinh(u±i;) = sinh u sinh''y +sinh'tt sinh v
;

and to these may be added

. „ „i /„, , „,\ tanh u±tanh v
tanh(tt±'i;)= = :

1±tanh It tanh -y

constituting the Addition Theorem for the Hyperbolic Func-
tions.

116. The Addition Theorem for the Elliptic Functions.

For the Elliptic Functions the analogous formulas of the

Addition Theorem are found to be

sn(u±i') = (sn u sn'i;± sn'w sn v)/D,

cn{u±v)= (cnu cnv+ cn'tt cn'i;)/D,

dn{u±v) = {dnudD.v±K-^dn'udn'v)/D,

where D= 1 — K^nhisn^v
;

or,performing the differentiations,and dropping the double signs,

, , > snucu'wdn'w-l-cnudn'usnv ,,.
sn(u+ i;) = ^ ^ 5

, (1)

, , , cnw cni;—snudnusnt;dn?; ,-,
cn(u-|-'y) = 2-1 , (2^

J , , , dnudnv— K^niicnusnvcn

V

,-.dnCu+^)=
:j

5-^ 5 (3)
1 — /cfsunt sn'^v ^ '

Putting K= 0, we obtain the formulas for the Circular

Functions, sin('u.+ t;) and cos(m+ i;), the denominator D re-

ducing to unity.

Putting K= l, remembering that then (§ 16) snu becomes

tanh u, enw or dnu becomes sech u, we obtain from (1)

, , >_ tanh w sech^-u+sech^it. tanh -y

^ 1 —tanh% tanh^i;

_ tanh ^(l — tanh^i;)+ (1 — tanh%)tanh v_ tanh u+ tanh v

1 — tanh'^w tanh^v 1+ tanh u tanh v'

as before; with the corresponding formula for sech(ti-|-ii)

or cosh(w-|-i;), the formulas for the Hyperbolic Functions.

117. To establish these formulas of the Addition Theorem

for Elliptic Functions, let us employ the geometry invented

by Jacobi (Grelle, Band 3 ; Gesammelte Werke, I., p. 279), at

the same time interpreting the geometry in connexion with

Pendulum Motion.
Q.E.F. H
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To do this, let us suppose that P' would be the position of

P in fig. 2 at the time t, if it had started t seconds later, and

puti-T= ^'; then (§6)

AN'=AD sD?nt', N'D=AD cn%f, N'E=AEdn^nt', etc.

;

and we shall prove that PP' touches a fixed circle through B
and B' during the motion (fig. 13).

W D
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and therefore R and R coincide ; and we have thus verified

that PP' touches at R the circle oR (using the notation oR to

mean a circle of centre o, and radius oR).

Putting Oo = a, and denoting the angles AOP, AOP' by 0,

&, and ADQ, ADQ' by ^, yfr, then

PR^= 2a . i^D = 4aR cos^i/.= 4>alK^cos% RP'^= i^ah^cos^
;

so that P'R+RP = 2j{al)K(cosy}r+ cos^),

while P'P= 2Z sin 1(0 -0'X
and therefore sin J(0 — 0') = ^{all)K{cos i/r+ cos 0).

Putting nt= ii, nt'= v, nT=u—v= w; then since (§8)

= amu, sin ^6 =k sin = /c sn u, cos |9 = dn w

;

i/r = ami), sini0'= /csim/^= K-sni;, cosJ0'= dn'y;

Va sinA(0— 0') snudni'— dnusni;
7—7 y—, 7T~ ; ) a constant,
t /c(cosYr+ cos0) cn'U+cnu

Putting t'= 0, v = 0, and therefore u= nT= 'W, we find

Va_ snw _1— cni{;_ /I-

Z l+cnw snw vl-

-cniy

. + cni«;'

so that

/I— cn(u— f;)_ sn u dn V— dn u sn t; _ en t'— en u
vs'l+cn(u— t;) cnv+ cnu snudnv+ dnusnt''

one form of the Addition Theorem, which by algebraical trans-

formation can be redxiced to one of the preceding forms of § 1 16.

118. Representing, as in § 31, sn u by Sp en u by Cj, dnu by

dj, and the corresponding functions of v by Sg, c^, d^ ; then

l\—cn{u— v)_s.^d2— Sc,d-^_ c.^— c^

vsl+cn(w— r) C2+c^ s-^d^+ s^d^'

so that
l-cn{u-v) ^ (c^_- c.Xft.d^- s^d^)

^

l+ CIl{u— V) (Cg+ CjXSjCZg+ S^C^l)'

and changing the sign of v,

cn(u+r)=-i-y—^,
another form of the Addition Equation.

Again
i-cn(u-v) ^ f-.d.-s^d.V

^^ ^ / c, -c^ ^^ l+cn(u-'y) \ Co+ Cj /' \s-^d^-\- s^dj

'

and, adding numerators and denominators (componendo),
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12 ^~ S-iCll-tSnCva

^"(^+^)='Sv^' ^^^

the usual form (2) of the Addition Theorem for the en function.

But, subtracting numerators and denominators (dividendo),

cn(u— v)= ^ / ^
J A ^

_ 1 — g^^— s/+kW^ .

Cj^Cg— s-^d-^s^d^

and another form can be easily established in the same way,

V,+ V)=^J ^% i-?.

(Glaisher, Messenger of Mathematics, vol. x., p. 106

;

M. M. U. Wilkinson, Proc. London Math. Soc., vol. xiii., p. 109;

Woolsey Johnson, Messenger of Mathematics, vol. xi., p. 138.)

119. Expressed again in Legendre's trigonometrical form,

with (p= am u, \p-= am w, y= am('ii— v),

la_1— cos y_ sin (ph.yp-— sin i/rA^
vi sin y cosi/r+cos^

V^
_l + cosy_sin^A\/'+sinT/rA0

a siny cos i//-— cos ^
Therefore, eliminating A^,

2sin t/r sinyA0 = (cos i//—cos^)(l+cosy)-(cos'»/<-+cos0)(l -cosy)

= — 2 cos ^+ 2 cos i/r cos y,

or cos = cos -i/r cos y— sin ^Ir sin yA^.

Expressed in Jacobi's notation, since u= v+ w,

cn(i;+ w)= en ?; en ly— sn V snw dn(i;+ w).

Changing v+w into u— i;, this becomes

cn(u— u) = en u en t)+ sn u sn ?; dn(u— -y),

or cosy= cos ^cosi/f+ sin^sini/rAy.

Conversely, these relations, treating y as constant, lead to

the differential relations du— dv= 0,

or d<plA(p-d\p-IA\lr= 0,

or {d<p)\l - K%inV) - (dirfil - Ain^) = 0.
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Writing x for sin <p sin i//-, y for cos cos i/', and m for Ay,

then cosy= ^{'m?— K'^)lK (§ 17); and the integral relation

becomes y+mx= ^(w?— k'^)Ik,

leading to the differential equation, of Clairaut's form,

y-x'p=J{f-K^)lK,
denoting dy/dx by p ; this is the form of the differential

equation when we change to these new variables x and y.

120. We have begun in § 117 by supposing the points P and

P' to oscillate on a circle with velocity due to the level of the

horizontal line BBB', cutting the circle in B and B' (figs. 2, 13);

but if they are performing complete revolutions with velocity

due to the level of a horizontal line BB' through D not cutting

the circle, but lying above it (figs. 3, 14), a similar proof will

show that PP' touches a fixed circle having with the circle

PP" the common radical axis BB', the two circles not inter-

secting; and the Landen point L (§ 28) will be a limiting

point of these two circles.

But this motion of P and P' in fig. 14 is imitated by the

circulating motion of Q and Q' on the circle AQ in fig. 13; so

that QQ' touches at T a fixed circle, centre c ; and the hori-

zontal line through E is the common radical axis of this circle

and the circle CQ, the Landen point L being a limiting point

;

and thus the Addition Theorem for Elliptic Functions can be

deduced from the motion of P and P' in fig. 14, or of Q
and Q' in fig. 13, as given by Dur^ge, Elliptische Functionen, X.

For if in fig. 14 a circle is drawn with centre o and radius

oR, such that BDB' (fig. 3) is the common radical axis of this

circle and of the circle AP, then, since the tangents to these

circles from D are equal in length,

I)0^-OP^= Do^-oR^;
and now, if the tangent to the inner circle at R cuts the outer

circle in P and P',

PR^=Po^-oR''=P0^+0o^-20o.0N'-P0^+0D^-Do^
= OB^-Do^+Oo''-20o.ON=20o.ND,

as in § 117 ; and similarly RP'^= 20o .ND ; so that

PR _ IN'I)_ YelQcitj oi P
.

RP' "SND velocity of P"
and therefore PP' will continue to touch the circle R, during

the subsequent motion of P and P'.
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Similarly, in fig. 13, QQ' during the motion touches a fixed

circle, centre c and radius cT; and putting Cc= c,

QT^= 2G.NE=id dn^nt, TQ'^= 4c? dn^nt'.

We notice, on reference to § 28, that

XQ2 ==2LG.EN=2LC. EA dn^nt = U\l - K'fdnHt= LA^dn^nt,

so that LQ= LA dn nt

;

and therefore ||=||

"

or LT bisects the angle QLQ' in tig. 13 ; while LB bisects the

angle PLP' in fig. 14 ; we may state this theorem geometrically,

" the segments of a tangent to one circle, cut oflT by another

circle, subtend equal angles at a limiting point of the two

circles."

Then, with the notation of § 117,

Q'T+ TQ= 2^(cO(Ai/.+ A</.),

and Q'Q= 2R sin(9i -yp-) = 2kH sm{<p- 1/^)

;

so that, in Legendre's trigonometrical form,

y/ — / or . L~, a constant,
AV-+ A9!. MkH' -Vii

Putting \Jr = 0, then 4>= y; so that

Vc _ /c sin(^ — i/f
) _ /c sin y 1 — Ay

R~ A\ly+ A<p ~1+ Ay'
°^

(csiny'

Vi2_/csin(^+ i/r)_/csiny 1+Ay
c~ Ax/'— A^ 1 — Ay' Ksiny'

the product of the two equations being unity.

Conversely, the relation

where (7 is an arbitrary constant,leads to the differential relation

121. Taking the equations

l +Ay_ /c^sin(0+ T/r) l-Ay_ /c^sin(^-i/r)

siny ""
A-\j/-— A(p ' siny A\l/-+ A<p

we find, on eliminating sin ^,

2Aos ^ sin V' sin y= (1 + Ay) {A\fr— A0) — (1 - Ay)(Ai/r+ A^)
= -2A^+ AyAi/',

A^= AyA\/r— K^cos (p sin i/r sin y,

or dntt= dn?;dnw— K^cnusni^snit;,

with u=v+w.
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By eliminating cos ^,

2/c^sin cos \/r sin y = 2Ai/^— 2AyA0,

Ai/r = A^Ay+Ain ^ cos i/r gin y,

or dn(u— it;)= dn u dn it;+ /c%n u sn w cn(tt— w).

Changing w into v,

dn(u— v) = dn u dn v+ K^sn uanv cn{u— t'),

or Ay= A<pA\fr+ /c%in <p sin \/r cos y.

Writing a; for /c%in sin ^/r, y for A<pA\p; and m for cny,

then 3/

+

mx= s/{k'^+ /c^™^),

the integral relation of Clairaut's differential equation

which is therefore the transformation of

when we change to these new variables x and y.

Taking the two trigonometrical expressions from § 119, 120,

for the Addition Theorem,

1 — cos y_ sin 0Ai/r— sin \/rA0 1 — Ay_ (c^sin(0 — i/r)

siny cos\/<-+cos^ ' siny A\p-+ A(j> '

we obtain, by subtraction and reduction.

Ay— cos y_ cos i/«-A0— cos ^ Ax/'

sin y sin ^+ sin -yp-

dn(u— w) — cn(u— t') dnucn v— cnudn v
or —5^

j ^ '-= ,

&n{ii— v) snu+snv

the form of the Addition Theorem given by J. J. Thomson

{^Messenger of Mathematics, vol. IX., p. 53).

122. With the notation of the elliptic functions,

1 + dn(tt—v)_ K(sn ucnv+snvcmu)
Ksn{u— v) dnv— dnu,

1 — dn(u— v) _ /c(sn ucnv— snv en u\

Ksn{u— v) dnii+dnu
Therefore, as before, with Glaisher's abbreviations,

1 — dn(M,— ;;)_ (d^— dj)(Sy^C2 - s^c^)

1+ dn(tt-v)~ (d^+ di)(SiC2+ s^cj

dn(u-v)= ^A''2+^A\
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Similar algebraical reductions to those given above for

cn(i(.— v) will establish the formulas for doa.{u— v) and dn('u,+'y),

given by Glaisher (Messenger, X., p. 106),

^Q^^+ V) — ^1 1^2~ ^2*^2'^! _ (^^'P'-iP'l,+ K S^^

12 2
^~ "2 11 11 •" Soi WiCvn

_ 1 — i^s^— K^s^+ i^s^s^_ d^d.^— K\s^c-fii

12 "'" ^ 12 12 '^ 1 2

the last of form (8), § 116.

123. The Duplication, Triplication, etc.. Formulas.

Putting i;=u in formulas (1), (2), (3) of 116, and writing

s, c, d for sn v. -"n u, dn u, we find

2scd

_£_2g2+^ _ -/2+ 2/V+kV

1 - 2/c^s^+gV_ k'^- 2K'^d^+ c?^

*^'^'^~
1-/.V -^'2+ 2cZ2_ci4-

Writing 5f, G, D for sn2u, en 2i/, dn 2u, we find

l-6'_s^2 l-^_/cW D-g_/V
l + 6'~ c^' l+i)~ d'' ' B+CcH^'

Putting tt= ^K, then ;S= 1, C=0, D = k ; and

Again, in § 67,

, ^ ^

_

(1 + KOsn('U,, K)cn(u, k) _ 1+k'
/
I— dn(2u, k)

sn^v, a;-
^^^^^^ ^ ^______

and 2u=(l+X)v, X= (1-k')/(1+'c').

dn(l+ X . V, k) = =—^;

—

„) \{ ,

1+Xsn^(w, X)

sn(i + X.v,,cj-
i+^gj^2(^^^y

,, , ^ X cn(v, X)dn(v, X)

1 + Xsn''(t), X)

which is called Landen's second transformation.
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Again, putting i;= 2w, and making use of the above formulas,
we shall find

sn3u= 3s-4(l+^V+6/cV-,cV
1 - Hk's'+4(1+ «'=>V- 3kV

l-sn3w^ 1 + .9/1 - 2g+ 2/c^s^- k^s^
1 + sn 3m 1 - sVl + 2s - 2k^s^-kW '

l-KsnSu^ l+ffS/l-2gs+ 2gs^-/cV
Y.

1 + a: sn 3w 1 - /rsVI + 2ffS- 2ks^-kW '

with similar expressions for en Su and dn 3u, leading to

l-cn3tt^ 1-c /k'^+ 2k'^ c+ 2k^c^+ K^cy
1 + en 3tt 1+ V^- 2k ^ c- 2k^c^+kW '

l-dn3it l-dfK'^+2K'^d-2d^ -#V
l + dn3u l+d\K'^-2K'H+2d' -d^J
dn3u-;t^^ d- K'/d'+ 2/c'#- 2K'd - k'^"

dn Su+k' d+Ad^- 2k'd'+ 2k'd - /c'V
'

the algebraical work is left as an exercise for the student.

124. Poristic Polygons ofPoncelet, with respect to two Circles.

Starting from the point A in fig. 13, and drawing the

successive tangents AQ^ Q^Q^, Q^Q^... to the inner circle,

centre c, from the points Qj, Q^, Q^, ... on the circle CQ;
or starting from A in fig. 14, and drawing the tangents AP^,
P^P^, P^Ps' •••to the inner circle, centre o, from P^^, P^, Pg, ...

on the circle OP ; then, if we denote the first angle ADQ^^ or

AEP.^ by am w, it follows from this construction that

ADQ^ =AEP^ =am 2w, ADQ^=AEP^= &m.3w,...;

and we have thus a geometrical construction for the elliptic

functions of the duplicated, triplicated, . . . argument.

When w is an aliquot part, one ti*^, of the half period 2K, or

T of the half period 2T seconds, then after n such operations

the polygon AQ-J^^Q^, ... , or APJPJP^, ... , will close on itself

at the starting point A ; and the preceding investigations show
that during the subsequent motion of these points, the polygon

formed by them will continue to be a closed polygon, inscribed

in the circle CQ and circumscribed to the circle cT, or inscribed

in the circle OP and circumscribed to the circle oB ; and thus

we have a mechanical proof of Poncelet's Poristic Theorem for

two circles, a problem discussed by Fuss, Steiner, Jacobi,

Richelot, and Minding.

(Cayley, Philosophical Magazine, 1853, 1854, 1861.)
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Let us consider the particular cases of w equal to ^, \, \, \,

... of the half period 2K.

(i.) When w= 2K, PP' is horizontal in fig. 13; and P and

P' coincide in fig. 14.

(ii.) When w= K, the circle oR in fig. 14 and the circle cT in

fig. 13 shrink up into the limiting point L, Landen's point

(§ 28) ; and now any straight line through L will divide these

circles OP or CQ into two parts described in equal times, ^T

;

while in fig. 13 the line PP' will touch the circle described

with centre E through B, L, and B', subtending an angle 4a

at ; and any arc PP' will be described in time \T, half the

time of describing BAB' ; hence the following theorem

—

" Two segments of circles are described on the under side of

the same horizontal straight line, one subtending twice as

many degrees at the centre as the other; if a particle oscillates

on the lower segmental arc under gravity, any tangent to the

upper arc will cut oflT from the lower an arc described in half

the time of oscillation." (Maxwell, Math. Tripos, 1866.)

As P' is passing through A in fig. 15, P is instantaneously

at rest at B or B' ; and AB, AB' are obviously tangents at B
and B' to the circle BLB', drawn with centre E ; while PP' is

one side of a crossed quadrilateral, escribed to this circle BLB',

and inscribed in the circle BAB'.

When the circle cT shrinks up into the limiting point L,

then, as in § 120,

Qi.2= 20Z . EN, LQ'^= 20Z . EN'
;

and since QL . LQ' is constant in the circle GQ, therefore

EN.EN' is constant, and equal to LE^, the value it assumes

when N and N' pass each other at the point L.

Since EN.EN'== EL^=EB\

a circle can be drawn passing through N, N', and touching EB
at B ; and the triangles ENB, EBN' are therefore similar, so

that ENB= EBN', EN'B= EBN.
(Landen, Phil. Trans., 1771, p. 308.)

Translated into a theorem of elliptic functions,

EN . EN'= EA^d.n^uAn^v, and EB^= k'^ . EA\
so that, as in (59), § 57,

dnudnv= K, when ii— v= K,
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Otherwise, since (§ 28)

QL = ALdnu, LQ'=ALdnv,
and QL.LQ'^AL.LD,
therefore • dn u dn u= LD/AL= k.

123

A
Fig. 15.

The similarity of the triangles AQL, LDQ' shows that

AQ/AL=DqiLQ';
and since (§ 10) AQ = AI)snu, DQ'=AD en v,

therefore, as in (57), § 57,

snu= cnt;/dnu or cdv, when u= v+ K.

Again, since DQ'jDL ^AQ/LQ,

,, » DL snw Ksnu
therefore en i»= -j-^ ^

— = -j .

AL dnu dn li-

as in (58), § 57, when v= u— K.
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Conversely, if the straight line QLQ', passing through L,

moves into the adjacent position qL(^, then

lWQ_Q^_ /^A^ _ velocity of Q
g'Q' LQ'~y EN'~ velocity of Q"

if Q and Q' move under gravity, or diluted gravity, on the

circle GQ with velocity due to the level of E ; so that QLQ'
will continue to pass through L, and will divide the circle CQ
into two parts described in the same time {T (§ 28).

If in fig. 13 we denote the radius of the circle c'f by r, then

cosy= r/(iJ+c),

y or ami/; denoting the angle ADQ-^ ; while, from § 120,

1—Ay c . E— G

and thence >c^= .p ,
..

i'
"^ = )-d x \2 a-

Again, if Dq is drawn from D to touch the circle cT, and

the angle ADq is denoted by y' or am w', then

, r cosy , cnwsmy =^=— = --—£- or snzy =t ,

'^ R— c Ay dnw
so that (§ 57) w+w'=K.

125. Foristic Triangles.

(iii.) When t(;= fZ' or f^, triangles Q1Q2Q3 can be inscribed

in the circle GQ and circumscribed to the circle cT, while at the

same time triangles P-^P^P^ (or hexagons) can be inscribed in

the circle OP and escribed to the circle oR (fig. 16).

The well known relations of Trigonometry

c^= R^-2Rr, or a^= R^+ 2Er',

where Cc= g, Oo= a, cT=r, oR= r', are now easily deduced.

We may write these relations, more symmetrically,

r , 7" , r r' ,= 1, or n ns=l-R-c' B+c ' a-R a+R'
In fig. 16, ADQ^= y= a.m^K, ABQ^^^ y'= am^K

;

and since cQz bisects the angle NM^A, which is equal to y,

therefore DcQ^ — KTr— y) ; and I)cQ^= BQ^c, or BQ^ = Dc.

Similarly AQx = Ac; so that

AQ^+DQ^=AD.
Therefore sin y'+ cos y= 1,

or • snJ^+cnfZ'=l,
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We shall employ this suffix notation for the points N, P, Q
to signify points corresponding to aliquot parts of K.

Corresponding to w= ^K, the circle oR becomes the circle

through B,N^, W ; and now Pa^lPi is a triangle escribed to

this circle, and inscribed in the circle OP.

For w= %K, the circle oR becomes the circle through

B, Ni, B' ; and now we shall find that hexagons can be

escribed to this circle, and inscribed in the circle OP.

The tangents at P«, Pi touch the circle BN^B', and the

tangents at Pi, Pe touch the circle BN^F ; while AP^, AP^
are the common tangents of the circles BN^B', BN^B'.

Denoting the sides of the triangle Q^Q^Q^ by q-^, q^, q^, then

2(gi+ ?2+?3)

But Up v,^, Wg denoting the value of u corresponding to the

points Qi, Q2' ^3' ^'^^ ^v <^2' ^3 denoting the corresponding

values of dn u, then (§ 120)

?! = Q2Q3 = 2VC'^Ol^a^s). • • •

;

so that —

=

T

—

, , ,7 -T'

a constant, a relation connecting d^, d^, d^, when

u. , = u.-u, =iK
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126. Poristic Quadrilaterals.

(iv.) When w= ^K, quadrilaterals Q^Q^Q^Qi can be inscribed

in the circle GQ which are circumscribed to the circle cT, and

now the corresponding relation is found to be

while T-^T^, T^T^ intersect at right angles in L, being the

bisectors of the angles between Q^LQ^, Q^LQ^ (fig. 17).

This relation is proved immediately by taking the quadri-

lateral in the position AQiBRs ; and now 7= 7'= am ^K,

so that squaring and adding leads to the desired relation.

As in (ii.), quadrilaterals can be escribed to the circle BLB',

which are inscribed in the circle OP, since Ni coincides with L.

But the circles BNiB' and BNaB' are related to the circle

OP with regard to poristic octagons; and the common
tangents of these circles are easily recognised at the points

Conversely, starting with the circle cT and the internal

point L, and drawing T-JjT^, TJ^T^ through L at right angles

to each other, the tangents to the circle cT at T-^, T^, T^, T^

will form a quadrilateral QxQ^QsQi which is inscribed in a

circle GQ, the diagonals Q^Q^, Q2Q4, passing through L, and

being equally inclined to T-yT^ and T^f^.

If Q-ipt Q^c, Q^Cy Q4P are produced to meet the circle GQ again

in q^ q^, q^, q^, then q-^q^ and q^q^ are diameters of the circle

GQ; for Q^q-^ bisects the angle Q^Q^Q^, so that the arc

Q25'i
= arc q^fi^, and similarly the arc $2^3= arc q^Q^, so that the

arc 5'iQ29'3
= ^^c 9iQi1s' ^^^ ^^'^'^ i^ therefore a semi-circle.

It follows, from elementary geometrical considerations, that

or TJ'i+T^T^^= T^T^^+TJ^^ = '^T^;

^""^
cQ^^'^cQ^- cQ^-^cQr r^'

so that cq^+ cq^= cq^+cq^= {BP-— c^flr'^,

leading to 2 {E"+c^) = {R^- cj/r^

or, as before, (_^)%(-^J=l.
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Denoting by u^, u.^, u^, u^ the values of u at Q^, Q^ Q^, Q^,
so that '"'1

—
"'2= W2— W3= U3-tt4=i-K';

and denoting by d^, d.-^, d^, d^ the corresponding values of dn u,

then (§57) d^d^=d^d^= K'

;

and (§ 1 20) LQ = 2i(l - ^Odn u,

so that Q^Q^= 2l{l-K'){d^+ d^), Q^Q,= 2l(l-K')(d^d,);

while Q^Q^= 2j{d){d^+ d^), etc.

A
Fig. 17.

Now by a property of the circle (Euclid VI. D)

Q1Q3 • Q2Q,=QiQ2 Q3Q4+ Q1Q4 • Q^Qs

;

so that Z2(i _ ^')2(^^ ^. ^^)(^^^ ^j
= cl{ (d,+ r/2)(fZ3+ d,) + {d,+ d,){d^+ d^}}

= cl{(d^+d^Xd^+d,)+iK},

or (dj^+ d^){d.^+ d^) is constant, and =2^/(1 +'),«:

the value obtained by putting u^ = 0, when

and d,=d^= ^/k, d.^= K',d^=l.
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when u.^— U2= ^K.

Thus 6n(u+m+—JL-^= V^Xl+ /)dnu

so that

dn(u+^-K) da^u+K

A^^«,^iir\ / vi I

rydTiu— (l—K')snucnv,dn(u+iZ)= V-a+O ^^^,^^^7
.

127. Poristic Pentagons, etc.

(v.) When 7;= f^, or ^K, the poristic polygons are pentagons

(fig. 18), and the relation to be satisfied is of the form

1 + p + q— (p + qf— (p + q){p— qY= 0,

or {p-qY=p + q-'i--'i-Kp+q),

where p and q are used to denote r/(R— c) and rl(R + c).

We notice that the relation for pentagons leads to a cubic

equation, when two of the three quantities R, r, c are given

;

but the equation reduces to a quadratic when c= or the circles

are concentric, the case considered by Euclid.

The reader is referred to the articles of Cayley (Phil. Mag.,

Series IV., Vol. 7, and Collected Works) and to Halphen's

Fonctions Elliptiques, t. II., chap. X., for the proof of this

relation and the similar relations for other polygons.

We shall find that Halphen's a and y (t. II., p. 375) are con-

nected with our R, r, c, k, and w by the relations

«= « =775 ^ o. -y= dn^i«=l-55 1 ;(R + cf—'T ' \R + c)

and thence Halphen's x and y can be formed.

By the use of Legendre's Table IX. for F{^, k) (F. K, t. II.)

we are able to construct geometrically, to any required degree

of accuracy, figures of circles related to each other for poristic

polygons of any given number n of sides.

Having selected an arbitrary modulus k or modular angle

|a, we look out the value of K, and then determine, by pro-

portional parts, the value of (p in degrees corresponding to an
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amplitude of Kjn, 2K/n, ... ; and these values of <p will mark
the position of the points Qj, Q^,

Thus, in drawing figs. 13, 14, 16, 17, we have selected

/c= sin 60°, when ir=2-1565; and in drawing fig. 16 for poristie

triangles, we find, from Legendre's Table IX.,

am JA'=c.m. of 38°49', amfir=c.m. of 68°5'.

A
Fig. 18.

These angles enable us also to set out figs. 13 and 14, where

the circles are drawn so related as to admit of poristie hexagons.

In drawing figs. 15 and 17, Landen's point L is sufiicient to

complete the diagram ; also to double the number of sides of

a polygon of an odd number of sides.

In fig. 18, K has been taken as sin 75°, as in figs. 1, 2, 3 ; and

now i?'=2'76806 ; and from Legendre's Table IX.,

amiir=c.m. of 30°18', am|iir=c.m. of 70°20',

by means of which the figures can be drawn.

Fig. 19 shows poristie heptagons, to the same modular angle

of 75°, laid out by means of the relations

^i = am+Z=c.m. of 22°8', 91)3=am !.«= cm. of 56°49',

05=am -fir= cm. of 77°6'.

G.B.r. I
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D

128. The poristic relation between the quantities R, r, c

has been obtained by placing the polygon in a symmetrical

position; but another method is employed by Wolstenholme

{Proceedings London Math. Society, vol. VIII., p. 136 ; also

by Halphen, F.E., II., chap. X.), where the polygon on the circle

OP is considered in its limiting form, when passing through

one or both of the common points B and B'.

Thus with triangles, the tangent to the circle oR at B must

meet the circle OP again at a point Pi, the point of contact of

a common tangent of the two circles P and B, the degenerate

triangle being BPP.
For quadrilaterals, the tangents to R at B, B' must meet at

A on the circle P, BAGAB being the degenerate quadrilateral.

For pentagons we obtain the degenerate form BPiP,P,PiB,
where BPi is the tangent at B to oR, the circle through

B, N^, B', and Pr is the point of contact of a common tangent

of the circles OP and oR (fig. 18).

For hexagons (fig. 16) the limiting form is BPiP^B'P^PiB,

where BP,, PsB' are tangents at B, B' to the circle through

B, Ni, B' ; and so on.
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129. Oeometrical Applications of Elliptic Functions to

Spherical Trigonometry.

Taking the fundamental formulas of Spherical Trigonometry

cos c= cos a cos 6+ sin a sin 6 cos G,

sinA sin B sin C
-. = —.—5- = ^— =K, suppose :

sin a sin o sin c

then 008 0=^(1 — /c%in^c)= Ac,

so that cos c= cos a cos h+ sin a sin 6Ac,

a formula like that of § 119, with a, b, c for 0, i/', y ; so that if,

keeping G, c, and therefore k constant, we vary a and b, then

cosB . cZci+ cosA .db= 0,

or da/Aa— db/Ab = {);

and, conversely, the integral of this differential relation is the

formula above.

(Lagrange, TMorie des fonctions, p. 85, §§ 81, 82

;

Legendre, Fonctions elliptiques, t. I., p. 20.)

If, in Jacobi's notation, we put

a= am{u, k), b = -a.m(v, k), c= am(w;, k),

then the differential relation becomes

du— dv= 0,

so that u—v= a>, constant= w,

since a= c,oy: u= 'w, when 6= and v= 0.

Supposing "/c is less than unity, and the angle G is acute, then

oG, and of the other angles, one, A, must be obtuse, and the

other, B, acute.

But by changing to the colunar triangle on the side BC, we
may convert the triangle ABG into one in which all three

angles are obtuse ; and in such a triangle we may put

a= amu, b = ir— ai'aiv= a,vai2K—v), c= a.ra(2K—'w);

so that if the triangle ABG has three obtuse angles, we may put

rt= am'M.j, 6= amw2, c = amit3,

where u-^-\-u^-\-u^='w+2K—v+2K—w= 4iK;

and nOw
cos J. = — dn Uj, cos 5= — dn i(-2, cosG= —d.nu^,

so that, by § 29, we may write

J. = TT— ain((ctti, 1/k), B= 7r— am(«:U2, 1/k), = tt— a,m(KU^, 1 Jk),

where k is less than unity.
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For instance, if ABG is the spherical triangle formed by three

summits of a regular tetrahedron,

A= B ^ G = |,r,

and cos a = cos h = cos c= — ^,

sin a= sin 6 = sin c= fV^'
_sin^_V3_V6 ,_s/}0 9 ,_ V15
""sina^V^" 8 '"" 8 ' "" 16 '

while u-^=zU2= u^= ^K,

so that en^K= -
J, sn"-|Z= f^2, dniK=f

When «:= 0, K=^Tr, and the triangle J.50 is coincident with

a great circle ; and now
a = u^, b= U2, c= Ug, and a+b+ c=27r;

while cos J.=cos5= cos (7= — 1, -il=£=0=-;r.

When K = 1, -£"= 00 ; and therefore of t<,^, u^, u^, two of them,

say u-^ and itg, are infinite ; so that

cosa= sechu^= 0, or a= j7r; and similarly b = ^Tr;

the triangle ABG now has two quadrantal sides and therefore

two right angles, the third side c and angle G being equal, and

taken greater than a right angle.

130. For values of k which would be greater than unity, we
change the notation by considering the polar triangle; and now
ifABG is such a polar triangle, having three acute sides, instead

of three obtuse angles, we put

sin a _ sin b _ sin c _
sinA sin B sin G

and A=a,vciv.^, B=^a,TaV2, G=a,mv^,

where Vj = 2^"— W;^, Vg= 2K— u^, v^= 2K— u^,

so that %+ Vg+ Wg= 2K.

Now sin a= /csn Vp sin b = Ksn.V2, sin c= Ksnv^;

cos a= dn v-^, cos 6= dn v^, cos c = dnv^;

so that a= am(/ci;^, 1/k), b = am(A:'y2, 1/k), c= a,m(KV^, IJk).

The fundamental formula

cos c= cos a cos 6+ sin a sin b cos c

now leads to the formula of § 121,

dn 'Z^g= dn i;j^dn V2+ /c^sn w^sn Vg en Vg,

or dn(Vj+ V2)= dn u^dn v^— /c^sn i;^sn Uae^v^+ V2).

In the degenerate case of k= 0, K^^tt, and

''^i+ '^2+ '^3= '^' or ^+-B+ (7=7r:

and now a= 0, b = 0, c= 0, so that the spherical triangle is
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Indefinitely small, and may be considered a plane triangle;

and we can thus deduce the formulas of Plane Trigonometry.

131. A spherical triangle thus falls into one of two Classes,

I. or II.; in Class I. the triangle, or a colunar triangle, has

three obtuse angles; in Class II. the triangle, or a colunar

triangle, has three acute sides ; the quadrantal triangle falling

into Class I., and the right-angled triangle into Class II.

In Class I. we put

sin J. _ sin 5_ sin G
sin a sin h sin c '

and then k is less than unity; and we put

a= am'M-p 6 = am^^2, c= amw3,

where u-y-'t-u^+ 'w^= ^K,

and then

J. = 7r— am(Ktti, l//c), B= Tr— &m{KU^, 1/k), G= tt— &m{KU^, 1/k).

In Class II. we put

sin a _ sin b sin c

sin J. sinB sin C '

and then k is less than unity ; and we put

A=a,mv-^, i?= amt>2, C'=am'y3,

where v.^+ v^+v^= 2K,

and then a— &m{KV-^, l//c), h = Sim{KV^, 1/k), c= a,m(KV^, 1/k).

When this triangle of Class II. is the polar of the triangle

in Class I., u^+ 1;^ = ti^+ t^g= Uj+ Vg = 2K.

The change from one Class to the other affords an illustration

of the change from one modulus to the reciprocal modulus (§ 29).

The spherical triangles employed originally by Lagrange

and Legendre fall into Class I.; and a full discussion of the

connexion between Elliptic Functions and Spherical Trigono-

metry will be found in the Quarterly Journal of Mathematics,

vols. 17, 18, 19, in articles by Glaisher and Woolsey Johnson.

But it is preferable in some respects to work with the

spherical triangles of Class II., as growing out on the sphere

more naturally from the infinitesimal plane triangle ; so it is

proposed to develop here the relations with Elliptic Functions

by means of a typical triangle of Class II., having three acute

sides, and to refer to the articles of Glaisher and Woolsey

Johnson for the corresponding relations of Class I.
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132. Writing Cj, Sj, d-^ for en Vj, sn 'U^, dn -y^, etc. ; then with

we may put, in Class II.,

so that cos A = c^, sin J. = s^, etc.

;

and now sin a= K sinA = ks-^, cos a= d^, etc.

From the fundamental formulas

cos c= cos a cos h+ sin a sin b cos 0,

— cos (7=cos J. cos^— sin J. sin£cosc,

we obtain d^= d-^d^+K^s^s.2C2,

where cig= dn Vg= dn(t!j+ v^), c^= cnVg= — cn('U^+ Vg).

Again, from these two formulas of spherical trigonometry,

— cos (7= cos A cos B— sin J. sin £(cos a cos 6+ sin a sin 6 cos 0),

cos ^ cos 5— sin ^ sin B cos a cos bOK= -

1 — sin A sin £ sin a sin 6

so that — c, = en(v,+v^ =-^—^ % \ ^
.

„. ., , cos a COS 6— sin a sin & cos J. cos£
bimilarly, cos c = ^ -.

—-.—=

—

^f^—.
-.—

^

,
•^

1 — sin A sin B sm a sm o

leading to d^^dniv^+ v^) = ^
'"iT'^^'^'-

As a specimen of Class II., take the spherical triangle formed

by three adjacent summits of a regular icosahedron ; then

A = B= G=i^;
, cos (7+ cos J. cos £ cos (7 1

and cosc= -.
—-.—-.—

„

=^ r(=—tf'sin J. sin ii 1 — cos C ^5
so that K = sin c/sin 0= f^(10- 2^5)

;

and then v-^= v^= v^= %K,

so that cn§E'=cos 0=1(^5 — 1),

dn fJT= cos c= \^o.

133. To prove that in a triangle of Class II. we obtain the

differential relation

co^b.dA+m&b.dB=Q, or dAILA + dBlh.B=Q,

when we change A and B, keeping c and G constant, dis-

place the triangle ABG into the consecutive position ABC,
keeping the points A, B fixed and the angle AG'B unchanged

in magnitude (fig. 20).
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Then, if GA and GB produced on the sphere meet the, great

circle of which G is the pole in P and Q, the arc PQ= G ; and
if G'A and G'B produced meet this great circle in P' and Q,
the arc P'Q' is ultimately equal'to the arc PQ, or

lt(PP'/QQ') = l-

H
Fig. 20. Fig. 21.

But PAP'= -dA, QBQ'^dB; while ultimately

PP'= — sinAP .dA = —cos 6. dA, QQ'=cosa.
so that cos b . dA + cos a . dB= 0,

or dA/AA + dB/AB= 0,

since sin a = /c sin A, cos a = AA.

dB;

With J. = am Uj, B- :am Vg, this becomes

dv,+dv,= 0,

so that i;^+ Vg= constant=2K— v^, where C= am Vg

;

since£+ C=x, or V2+ v^= 2K, when J.=0,
'yi
= 0.

Conversely, this differential relation, interpreted with respect

to the triangle ABG, of which the side AB is fixed, expresses

the constancy of the opposite angle G.

134. If, as is customary, we deduce the differential relation

cosB .da+cosA .db = 0, or da/Aa+db/Ab= 0,

from a spherical triangle ABG of Class I., in which

sin J. = /c sin a, cosJ. = Aa,

we keep the angle G fixed, and displace the side AB into its

consecutive position A'B', without change of length, through

an infinitesimal angle about the centre of instantaneous

rotation /, the point of intersection of the arcs AI, BI, drawn

perpendicular to GA, GB respectively (fig. 21).

sin lA sin IBH cos B
Then

db _ AA'
da~ BB''' sin IB

"

sin IAH' cos -4'
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135. To obtain immediately the addition formulas (1), (2),

(3) of § 116 for the elliptic functions, Mr. Kummell draws the

arc GB perpendicular to AB (fig. 20), and denotes the perpendi-

cular GB by f, the segments BGB, AGB of the angle G by

F, G, and the segments BB, BA of the base Ghy f, g; so that

F+G= Gf+9= c.

(Kummell, Analyst, vol. V., 1878.)

Now, from the right-angled spherical triangles AGB, BGB,

cos G=BmA cos b/cos p, sin G= cos A/cosp ;

cos F= sin B cos a/cos p, sin F= cos 5/cosp ;

or with sin A = s^ cosA = c-^, sin a= ks, cos a=d-^, etc.,

and writing M for cos p,

cosG= s-idJM, sinG^cJM

;

cos F=s^dJM, sin F=cJM.
Also sin p= sinAsmb = sin a sin B= KS^Sg,

so that M^= cos^p= 1 — k^s-^s^,

a quantity which we have found it convenient to denote by B.

Now, cos (7= cos F cos G— sin # sin G,

or Cg= (siSgt^icZa- c.^^c^)/B,

or cn(v;^ 4- Vg) = — en Ug= (cjCg— s-^s^d-^d^/B,

formula (2).

Again, sin C^ sin(i?'+ G)

= sin i'' cos (?+ cos F sin G,

or S3=(SiC2(^2+ S2Ci(^i)/A

where Sg= sn t^g= sn(i>j -|- v^), as in formula (1).

Changing the sign of v^,

sn(»i— v^) = sin(i?'— G),

or i''— G= am(t;^— Vj),

while i''-|-G'= ami'3= am(2£'— Wj— i;2)

= 7r— am(Uj+ 'y2),

sothat .F=j7r— J am(Vj^+ '^2) + i am(u^— v^),

(?= ^TT- 1- am (i)^ 4- ^2)- 1 am(i;^- v^).

Thus, for instance,

tan{ I a,m(v-^+V2) + J am(i;i— t)^)} = cot (r = tanA cos 6 = s^d^jc^,

tan {I am(i)j+v^— ^ &Ta.{v-^— v^} = cot ^= tan i? cos a= s^djc^.

Again, from the right-angled spherical triangles BGB, AGB,

cos /= cos a/cosp= dJM, sin /= sin a cos 5/cosp= ks^cJM;

cos gf= cos 6/cos p= cZg/ilf, sin g^= sin 6 cos J./cos p= ks^c^jM;
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Snd therefore

dn(i);^+ Vg) = dn V3= cos c= cos(/+ g)
— cos/cos g— sin/sin g
= (djd^— K\s,f^c^lD

as before, in (3), § 116.

Also &ui(J+g)= Ksn{v-^^+v^}, s.m(J-g) = Ksn{v.^— v^;

whence /and g can be found as functions of v^+ ^ya
and v-^^— v^.

136. The formula employed by Morgan Jenkins in the

Messenger of Mathematics, vol. XVII., p. 30, as fundamental

in Spherical Trigonometry, is

sin(J.+£) sin (7 , .

coso+ cosa 1+ cosc

and this now leads to

^1^2 ~r S^C-^_ S3

cZg+fil l+cZg'

or, in the Legendrian form

sin(.A+^) _ sing

AB+AA ~l + AG'

a formula already obtained from pendulum motion in § 120.

Then the formula

d^— dj^ 1 — dg

sin{A—B)_ sinG
^

AB-AA ~r^AG'
sin(J.— £) sin (7 /o\gives ^^ i- = («)
cos — cos a 1 — cos c

The formulas of § 120, in the form

12 ~^~
2 1 ^^ S-tCv^ ~~ "2^1 ^3

lead to the relations

sin(a+ 6) _ sine

cos^+ cosJ. 1— cosO'

sin(a— 6) _ sine

•(y)

cos £— cos J. l + cosC '

and from these four formulas of Spherical Trigonometry Mr.

Morgan Jenkins deduces the analogies of Napier, Delambre,

and Gauss.
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137. Write, as before, in § 135,

A = am u, B= am v.,

F==^Tr — ^a.Ta{u+ v)+ ^a,m(u— v),

G= ^7r— ^a,m(u+v) — ia.m{u— v).

Then, since

sin(l' +0) + sm{F- G)= 2 sin i^cos 0,

therefore, writing Cj, Sj, c?^ for en u, sn u, dn u, and Cg, Sj, cZg for

en V, sn v, dn v, and D for cos^^ or 1 — k^s^s^^,

sn(u + v) + sb(u— v) = 2 s-^c^d^/D; (1)

cos(i?'- G)-cos(F+G) = 2 sin J^sin G,

cn(u— v)+ cn('u, + -y) = 2 CjCgZ-D ; (2)

cos(f-g)+ cos(f+g) = 2cosfco!ig,

dn(w.— v)+ dn(u + v) = 2 d-^dJD

;

(3)

sin(J^+ G)-sm{F- G) = 2 cos i^ sin G,

sn{u + v)~ sm(u— v) = 2 s^c^dJD ; (4)

cos(i?'- G) + cos(F+ G) = 2 cos i^'cos G,

cn(u— v)— cn(tt + v) = 2 s^d-^s^dJD

;

(6)

cos(/-5')- cos(/+^)= 2sin/sin9',

dn(u— ?;)— dn{u + v) — 2K^s-^Cj^s^cJD; (6)

sin(i^+ G)sin(i^- G) = sin2J?'-siu2G,

sn(u + v) &n{u-v) = {c^-c^)D = (s-^-s^)ID. ..(7)

Again, since

1 + sin(/+ g)sm{f-g) = cos^g + sin^/,

and- sm{f+g) = Ksn(u + v), sm(f—g)= Ksn(u— v),

l + K^sTi{u + v) sn(u-v) = (d^^ + kW^)/D ; (8)

1 + sin(^+ G)sin(i?'- (?) = sin2i^+ cos^f?,

1+ sji(u + v) sn{u— v) = {c^ + s^d^)ID; (9)

1 - cos(i?'+ G)cos(i^- G) = sin^G + sin^i?',

1+ cn(M+'u) m{u-v)= {c^ + c^^)ID; (10)

1+ cos{f+g)cos{f—g) = cos^fcos^g,

1+ dnlu + v) dn{u-v) = {d^^ + d^^)/D; (11)

1~ sin(/+£r) sin(/-^) = cos2/+sin2c^),

l-K^sniu + v) sn(u-v) =(d^^ + kW^)ID ; (12)

1 - sin(i?'+ G)sin(i^- G)= sin^G + cos^F,

1- sn(u + v) sn(u-v)= {c^^ + s^^d^^)/D; (18)

1+ cos(^+ G)sm{F- G) = cos^G^ + cos^i?;

1- cn('M, + i;) ca{u-v)=(_s-^H2^ + s^%^)/D; (14)

1- cos{f+g) cos(/-6f)= sin2/+sin25f,

1- dn(u + v) dn{u-v) = K\s^\^ + s^\^)ID; (15)
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{l±sin(F+(?)}{

{1± sn(tt + v)}^

{l±sin(J'+(?)H

{1± sn(M. + i;)}j

{1± Bm{f+g)}{
{1±ksxi(u + v)}\

{l±sm(/+^)}^
{l±Ksn(u + t!)}^

{l+cos(J?' +(?)}]

{1± cn{u + v)}{

{l±cos(F+0)}{

{1+ CD.(U + V)}\

{1± cos(f+g)}\
{1± dn(u + v)}\

{1± cos(/+^)}^

{1± dii(u + v)}\

\{l±sm{F-G)}^(sinF±cosOy,
\{1± sB(u-v)} = (c,±s^d,y/I); (16)

HI +siii(i?'- (?)} =(sm (?±cos J^)2,

K1+ sn(w-v)} = (ci±S2cZi)2/-D; (17)

\{1± sm(f-g)} = (cosg±sijxf)%

}{l±Ksn(u-v)} = {d2±KS^c^y/I>; (18)

K1+ sm(f-g)} = {cosf±smgy,
\{l + Ksn{u-v)}==(d^±KS^c^y/D; (19)

\ {1l±cos(F- G)} = (sin i^+sin Gf,
\{1± cn{u-v)} = {c^±c^)yD; (20)

Kl±cos(i^- G)} =(cos G + cosFy,
}{1± cn(u-v)} = (s^d^+s^d;)^ID; (21)

\{1± cos(f-g)} = {cosf±cosg)\

\{1± dn{u-v)} = (d^±d^y/D; (22)

}{1+ cos(f-g)} = {smf+smg)^,

\{1+ dn{u-v)}=K%s^c^+s^Cj)yi); (23)

sin(^+ G)cos(F— G) = sin GcosG + sin i^cos F,

sn(u + v) cn.{u— v) = {s-^c-^d^ + s^c^d^jD
; (24)

— sin(i'— G)cos{F+G) = sin GcosG- sin F cos F,

sn(u— v) cn(u + v)= {s-^c-^d^— s^c^d-^jD

;

(25)

sin(/+ g) cos{f-g) = sin/ cos/+ sin g cos g,

sn(u + v) dn(ii — v) = (s^^d^c^ + s^d^c^jD
; (26)

siK/-5') cos(/+g')= sin/cos/-singrcoss',

sa{u—v) dn{u + v) = {s.^d-jC^— s^d^.^]D; (27)

-cos(i^+ G)cos(/-g')= {cos J. cos£-sin J. sin£cos(/+g')}cos(/-s^),

cn('M + v) dn{u— v) = (c^c^djd^— k'\s^)/D
; (28)

cos(F-G)cos{f+ g) = cos(-F-G){cosa cost + sinasin?)cos(i^+ G)},

cn{u— v) dn(u + v) = {c^c^d^d^ + K^s-^s^jD

;

(29)

sin 2(x= 2 sin G cos 0,

sin {am(tt + v) + am(u— 1>)} = 2 s^c^dJD

;

(30)

sin2J?'=2sinJ^cosi?',

am{a.m(u + v)— &m(u— v)}=2s^C2dJI)

;

(31)

— cos 2G= sin^G— cos^G,

cos{am(ii + v) + am{u— v)} = {c-^— s.^d^)jD
; (32)

-cos2i^=sin2^-cos2i?',

cos{am(w + v)—am(w— v)] = {c^— s^d-^)ID

;

(33)

the thirty-three formulas of Jacobi, given in his Fundamenta

Nova, 18, and reproduced in Cayley's Elliptic Functions.
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Similarly any other formula in Spherical Trigonometry is

converted into a form of the Addition Theorem of the Elliptic

Functions, and. conversely ; by writing c^, Sj for cos J., sin J.,

and d-^, ks^ for cos a, sin a, etc., with

Thus the six four-part formulas, of which

cot a sin c= cot J. sin5+ cose cos5
is the type, obtained by eliminating cos h between (a) and (jS),

lead to s^d^— s^c^+ s-fi^d^,

with five other similar relations.

By means of these and the preceding relations we can prove

the following examples on the formulas of Elliptic Functions.

Examples.

1. Prove that, \iu+ v+'w+x= 0,

/• s cn'udn V— dnucni) . en wdna;— dnwcna;_„
sn w— sn t) SQ.w— sn.x

(ii.) k'^— /cV%n 'wsnvsn.wsnx+ K^cn ucnvcnwcnx
— dn u dn i; dn w dn a;= 0.

2. Prove that

,. . , .
, , . . 2/c^sn ucavdoav

(i.) ns(tt-v)+ sn('U.+ v)=—^-5 ^-^ ;

(ii.) 1 - K\n\'w+v)sii\u -v)= {l- An%)(l - /c^sn*^;)/!)^;

(iii.) /c^sn(w+ v)sn(u— v)Bn{u+ w)s'a{u— w)

,
(\—K^snhi){\—K'''ST?vsn\u) _

( 1 — K^sn^u sn^t;)(l — K^sn^t6 snHu) '

,. , 1 — ;c^cd^(u+ ';;)cd^(u— v) _ ,^( \—K?sn^us-n?v^
^^"^>

\-K^snHu+ v)sn\'w-v)'''^ V^+ /c^cn^w enW "

. - l-snu_ cn^|(w+ -g)dn^K"'+ -^)
.

^^' l+snu /c'2sn2^(u+ir)
'

(11.) TT-

—

--, —5 =/c%n*A(tt+A).
^ ' l+zcdnu+Anu 2v

' ^

4. Prove that

1, {l±/csn2J(u+v)}{l+/csn2|(u-'y)}

and hence prove that the expression

1—Ksnxsny l+Ksnzsnw
l+Ksnxsuy 1— jcsn^sn-u;
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remains unaltered when for x, y, z, w we substitute respectively

lix+ y+ z-^rw), \{x-\-y-z-w), \{x-y+ z-w),

\{x-y-z+ w).

5. Prove that, if tanh A=k sn^a, tanh B= k sn^,8,

tanh (A - 5) = /c sn(a+ /3)sn(a- j8).

Deduce Jacobi's relations,

sn(/3+ y)sn(;8— y)+ sn(y+ a)sn(y- a)+ sn(a+ /3)sn(a— /3)

+ K^sn(/3+ y)sn(y+a)sn(a+ /3)sn(/3— y)sn(y— a)sn(a-/3) = 0;

or

1 - Ksn(/3+y)sn()8 - y) 1 -Ksn(y + a)sn(y-a) l-/c sn (g + ^)sn (a-/3)

l+KSn(/3+y)sn(^-y) l+Ksn(y+a)sn(y-a) l+Ksn(a+/3)sn(a-;8)

or =1

;

l-Ka'n{t-x)sD.{y-z) \-KSTi{t-y)sn.{z-x) l-K&n{t-z)sn{x-y)

l+Ksn{f~x)s,n.{y-z) \+Ksa{t-y)sn{z~x) l+/csn(^-2!)sn(a;-2/)

or =1

;

l-/csnusn'y l + KS^(u+'w)sn{v+w) l-Ksn{u+v+w)sxi.%o

_

1+Ksnusu.v \-KSli{u+^u)sn{v+^w) l + Ksr\(Vj+v +w)snw
(Glaisher, Q. J. M., vol. XIX., p. 22.)

6. Prove that the tangents at the points on an ellipse of

excentricity e whose excentric angles are

^ = |Tr— am('u,, e), •i/r= ^7r— am(v, e),

will meet on a confocal ellipse when u— !; is constant, and on

a confocal hyperbola when w+ ii is constant.

Hence show that the general integral of

d<pls/0- - e%inV) -c^WVCl - e'sin^,/.) =
may be written

^sinH(</i+ V')+52^cos2K0+ ^) = cos4(^-V');

and convert this into the form

cos y = cos cos i/r+ sin sin ylry/{l — e^sin^y),

proving that tan^^y=
J^^^'^^y

7. Prove that the straight line joining the points

ccn{u+v), can{iJb+ v) and ccn(ii— v), csr\{u— v),

on a given circle of radius c, will touch an ellipse whose semi-

axes are csn{K—v), cc'o.v, when u is constant and v is

variable ; and determine the envelope when u is variable and

V is constant.



CHAPTEK V.

THE ALGEBRAICAL FORM OF THE ADDITION

THEOREM.

138. The first demonstration of the existence of an Addition

Theorem for Elliptic Functions is due to Euler

(Acta Petropolitana, 1761; Institutiones Calculi Integralis),

who showed that the difierential relation

connecting X= ax^+ 4<bx^+ 6cx^+ 'idx+ e,

or (a, b, c, d, e)(x, 1)*,

the most general quartic function of a variable x, and Y the

same function of another variable y, leads to an algebraical

relation between x and y, X and Y.

This algebraical relation is

UX-^JY\^= <x+yf+ 4>b(x+y)+ G,
\ X y /

where G is the- arbitrary constant of integration; and this

relation when rationalized leads to a symmetrical quadri-

quadric function of x and y, of the form (§ 148)

ax^y''+ 2^xy{x+ y)+ y{x^+ 4:xy+ y^)+ 2S(x+ y)+ e= 0,

or (ax^+ 2/3a;+ y)y^+ 2(^x^+ lyx+ ^)2/+ yx^+ 2fe+ e= 0,

or {ay''+ 2(82/+7)«'+ 2(/32/2+ 2y.v+ S)x+ y^/^+ 2^2/+ e= 0.

(Cayley, Elliptic Functions, chap. XIV.)

With a= and b = 0, X and Y reduce to quadratic functions

of X and y ; and then

^ '^—= a constant
x-y

is the general integral oi dxl^X-\-dyl^Y=0.
142
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139. By writing (?a;'+m)/(JV+m') for x, which is called a

linear substitution, this symmetrical quadri-quadric function

becomes unsymmetrical, the five constants a, /3, y, 6, e being

thereby raised in number to nine ; and then

dxj^X becomes changed to (im'— l'm)dx'I^X',

where X'= {a, b, c, d, e){lx+m, I'x+m'y.

The invariants g^ and g^ of the quartic X have been defined

in § 75, and in § 53 the discriminant iii.=g,^— 2*lg^, and the

absolute invariant J=g^lA. ; and now, if g^, g^', A', J' denote

the same invariants of X', we find

g,'= (lm'-l'myg„ g^= {l'm-lm')%, A'=(lm'-l'my^A;
while the absolute invariants J and J' are equal.

Conversely, any unsymmetrical quadri-quadric function

whatever of x and y may be written

G(x, y)= {ax^+ 2l3x+y)y^+2 {fi'x^+ 2y'x+ S')y+yV+2S'x+ e"

=Ly^+2My+N=0;
G(x,y)= (ay^+2/3'y+y")x'+2{/3y^+ 2y'y+S")x+yy^^+ 2S'y+e"

=Px^+2Qx+R= 0;

L, M, N being quadratic functions of x, and P, Q, R being

quadratic functions of y.

Then by difierentiation

{Px+Q)dx+ (Ly+M)dy = ;

and by solution of quadratic equations

Iyy-\-M=J(W-LN) = JX, suppose

;

Px+Q=^J{Q''-PR)= JY, suppose;

and thus we are led to the differential relation

dxlJX+dylJY=i),
where X and Y are quartic functions of X, not necessarily of

the same form, but having the same g^ and g^.

A linear transformation, such as that given by

y= (ly'+m)/{l'y'+m'),

can however always be found, which will transform

dy/JY into dy'/^r,

where Y' is a quartic having the same coefBcients as the quartic

X ; in other words, the quartics X and Y have the same in-

variants ; so that we may, without loss of generality, consider

X and F as of the same form, and therefore drop the accents

in the expression for 0(x, y).
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Now JX=Ly+M=(ax^+ 2/3x+y)y+^x^+ 2yx+ 8,

y/Y=Px+Q = (ay'+2l3y+y)x+l3y^+2yy+S;

so that ^—ILv_ _ ^r(.y^ ^(jg^ 2/)+ y,

a form of the integral relation, in which the coefficients a, b, c,

d, e in X and F are functions of a, 13, y, S, e, determined by

aaj*+ 46x^+6cx^+ 4<dx+

e

= (/3a;2+2yx+Sy- {ax^+ 2/3x

+

y)(ya;2+2Sx+ e),

the Hessian, with changed sign, of (a, /3, y, S, e)(x, 1)* ; and

a(x+yf+4<h{x+y)+ C
= {axy+ ^{x+ y)+ y}^

^{^^-ay){x+yr+ 2i^y-aS)(x+y)+ y^-ae.

140. Lagrange proves Euler's Addition Equation as follows :

—

Put dxjdt= ^X, and therefore dyjdt= —^F; then

^= 2{ax^+2bx^+ Zcx+ c^) = 2X^,

^= 2(a2/H 362/H 3c2/+ d) = 2 Fi,

suppose; so that putting x-\-y='p, x— y= q, then

g= 2(X,+ F,)

= ia(^3+ 3^22^+ 3^(^^2+ g2-) + gg,+ 4^_

d/p <iq_Y— Y
dt dt

= ^apq(p^+ q^)+ hq(3p^+ q^)+ 6cpq+ ^cZg

;

whence q'^^-^^'k^apq^+ 2bq'

(f dt dv' q^ dt\dtJ ^ dt dt

Both sides of this equation are now integrable, so that

(3-1/= ^^^+ ^^^+ ^'

or (^H^Z.^>lTf= a{x+ y)^+ ^b{x+ y)+ C.

We notice here that, if G=ib^ja,

s/X-JY_ a(x+ y)+ 2b
^
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141. In the canonical form considered by Legendre, with

cc = snu, dx/du = i^{l—x'^.l—A^),

y = snv, dyldv = ^(l-y^.l-K^y^),

then X= 1-x'.1-kV, r=\-y^.l-KY
Therefore dx/^X+ dy/^Y=0,

leads to du+ dv =0,

or u+ V = constant;

which, in Clifford's notation, may be written

sn'^aj+sn-iy= constant.

Euler's Addition Theorem of § 138 now gives

_ (en tt dn It— en v dn vf— «:^(sn^tt— sn^t))^

(sn u— snv)'^

_ /dn w en I)— en 14 dn ^Y_ /dn(u+ ti) — cn(tt+ 1;)\^

\ snu— snt) / \ sn{u+v) ]'

by J. J. Thomson's formula of § 121.

142. But the Addition Theorem (1) for sn{u+v) of § 116,

/ ,
s snucnvdn'U+ sn'ycnttdnu

sn(u+v)= 5-^4 5
,

when translated into the inverse function notation, gives

sn ^+sn y-sn l-^y
This reduces, for k= 0, to the trigonometrical formula

sm-'^x+sm~'^y = ahi-''^{x,^(l—y^)+yy/(l~x^)},

the integral of dxlij{\ — x^)+ dyl,J{ 1 — 3/^) = ;

and for /c=l, to

tanh - ^a;+tanh - ^-u = tanh -\ ^ ,

the integral of dxjil - x^)+ dyl(l - y^) = 0.

Similarly, equations (2) and (3) of § 116 may be written

dB-.+do-,-d„-.-^-'-v('-'--^f;j;y('-^--/-«-).

We can now see why so little progress was made with the

Theory of Elliptic Functions, so long as the Elliptic Integrals

alone were studied, and also why Abel's idea of the inversion

of the integral has revolutionised the subject.

G.E.F. K
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143. A slight change of notation in the canonical integral

(11) of § 38, suggested by Kronecker (Berlin Sitz., July, 1886),

introduces a further simplification, on writing

x=Kan\luljK);
then dx/du= ^/k an(^u/^K)cn{^u/i^K)dn{^u//^k),

dx^ x(^ a;\,, ,

= x{^ — px-\-a?),

with /) = /c-^+/c;

and now u=fdx\JX,

with X= a;(l — jocc

+

x^).

Now
Kw+ i')/x/f= sn -V(^M+ sn "V(2/M

-,n-iW(i-py+2/^)+Vyx/(i-/°^+^^)
\-xy

144. In Weierstrass's notation, we take

X= iiji?-g^x-gy

so that, in the general expression of the quartic X,

a= 0, 6=1, c= 0, d=-\g^, e=-g^;
and now Euler's form of the Addition Theorem becomes, with

z for G the arbitrary constant.

Now if x= (pv,, y = ^v, so that JX=—f'u, i^Y= —p'v,

then we shall find (§ 147) that z= p{u+v); so that

^(^+^) =<'^'y-^^-^^= ^^>

•or, in the inverse notation,

Put «+'?;= — ty, so that

J3(w +-!;)= ^w, p'{u+ v) = - ^'-u;,

since (§ 51) fw is an even function, and f'w an odd function

of w ; then, with

and therefore also, by symmetry.
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)v—pw_pw— ^io_pu— pv
^v— ^w pw— fVj pu— pv

or i^v— f^v )g)'u-\-{fw—pib)p'v+ {ipvy— i^v )<p'w= 0,

or {p'v— 'p'w)fu + (^'w

—

f''w)fv + {f'u— p'v)pw = 0,

1, ^u, p'u

or = (G)1, pv, p V

1, pw, f'w

Weierstrass thus replaces the three elliptic functions snu,

en u, dnu by a single function pu, and its derivative p'u.

145. Take for example the integral of ex. 8, p. 65,

JX-^dx, where X= {x— a.){ax^+2bx+ c},

a cubic function of x, having a factor x— a.

This example shows that we may put

X* .,, . . ac-b^

x—a aa^+ 2ba+ o

J ,, „ .ax^+ 2bx+c . ac— b^
and then m= 4 -r—— *—s

—

^i

_ Maa+ b)(x-a)+ aa'+ 2ba+ cY
{aa^+ 2ba+c){x-af

Now, if y and z are the values of x corresponding to the

values V and w of u, and if

u+v+w=0, or /X-^dx+/Y'^dy+/Z-^dz= 0,

a a a

then the integral relation (G) of § 144 connecting x, y, z becomes

{y-z)X^+(z-x)Y^^{x-y)Z^ = ^ (1)

We notice that the integral relation does not require the

knowledge of the factor a;— a ofX ; so that, writing

X=^a;3+S-Ba;2+3C'a;+Z),

we have, on rationalizing the relation (1),

3,{3)-z){,z-x){x-y){XYZf = {:i)-z)^X-^{z-xfY-\-{x-y)^Z

= S{y-z)(z-x){x-y){Axy£+B{yz+zx+xy) + C(x+y+z)+D};
or XYZ=={Axyz+B(yz+zx+xy) + C{x+y+z)+D}^. ...(2)

(MacMahon, Comptes Rendus, 1882
;
Q. J. M., XIX., p. 158.)

Then X*Y^(y - z)Xi+{z-x)Y^
+(x-y){Axyz+B(yz+zx+xy)+ G(x+y+z)+I>} = 0,

go that .-^^^HyXi-xYi) + {x-y){Bxy + C(x+y)+D}
^

2*F^( Xi- Yi)-{x-y){Axy+B(x+y)+ C}'

equivalent to AU^gret's result (Comptes Rendus, 66).
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14)6. We shall find it convenient to replace the constant G
in Euler's integral relation by 4c+ 4s, and to consider s as the

arbitrary constant, the meaning of which is to be interpreted

;

and then

s=l(^^- 'J'^)^-la{x+yf-h{x+y)-c,
\ x—y /

._F(x,y)-JXJY

where

F{x, y)= ax^y'^+ 2hxy{x+y)+ c(x^+ 4x2/+ 2/^)+ 2<^(a!+ 2/)+

e

= {ouii? + '2hx+c)y^->r2{hx^+ '2.cx+d)y+ cx^+ 2dx+e
= (a2/2+2hy+ c)x^ +2{by^+2cy+ d)x+ cy'^+2dy+e,

a symmetrical quadri-quadric function of x and y.

Treating s as a function of the independent variables x and

y, we shall find

IdF ,y_ldX .

. 3s^ 2dx^ 4> dx^ FJX-XJY
^ -dx {x-yf {x-yf

{ay^+ Sby^+^cy+d)x+ by^+ Scy^+Uy+

e

.

_^ {aaf^+^bx^+ Zcx+ d)y+ bx^+ 3cccH ^dx+ e ,„
+

{x-yf
^^

(cc_ 2/)B V^ + (^_ 2^)3
V -»^

.
suppose

,

3s
and similarly we shall find that i>JY:^ has the same value.

But if s is taken as constant, then

^—dx+-^d'u = 0,
3a; 32/ ^ '

or dx/^X+dy/l/Y=0,
so that the differential relation which leads to Euler's integral

relation is thus verified.

147. But now denote

is^-g^s-g^ by S,

where g^= ae— 4<bd+Sc^, g^= aGe+ 2bcd— ad^— eb^— c?,

so that (§ 75) g^ and g^ are the quadrivariant and cubicvariant

of the quartic X (Burnside and Panton, Theory of Equations

;

Salmon, Higher Algebra).
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We shall find, after considerable algebraical reduction, that

,^_ (7,x+ Y,)JX-(X,y+X,)JY

,, , 1 dx, 1 dy_ 1 ds
so that __+-^__-__
and the elliptic elements dxj^X and dyj^Y&ve now reduced by

this substitution to Weierstrass's canonical form ds/y/8 of § 50.

Mr. R. Eussell points out a concise way of performing this

algebraical reduction, by means of the linear substitution

t= (rx+y)l(T+l) in the quartic (a, b, c, d, e){t, 1)*;

which then becomes of the form

XT*+4>{X,y+X,)T^+ 6F(x, y)r^+^Y^x+ Y^)t+ Y,

or J.T*+ 45t^+ 6 Ct^+ iDr+ E, suppose.

If the invariants of this new quartic are denoted by Q^, G
then Gi= {x- y)%, G^=(x-yfGs;
and /S=4s^—§'28— g'g

2{x-yf ^2 2{x-yf ^^

_ {G-JAJEf- G,{C-^AJE)-2G,
2{x-yf

JDJA-BJEf
{x-yf

_ {{Y^x+ Y.}JX-{X,y+X,)JY]^
{x-yf

148. Rationalizing the integral relation of § 146,

{2s(x-yf-F{x,y)Y^XY,
or s\x— yf — sF(x, y) — E(x, y) = 0,

where E{x, y) = {(ac—y')y^+{ad—hc)y+ \{ae— c^)}x''

+ {{ad—'bc)y'''+{\ae+'ibd—^c''')y+ be—cd}x

+ \{ae —c^)y^+ (be— cd)y+ ce— d'^;

or (s'

-

^92){^-yf- s-f(^> y) - H(x, y) = 0,

where H{x, y) = (ac— b^)x^y^+ (ad— bc)xy{x+ y)

+ l{ae+ 2bd- 3c^)(x^+ ixy+ y^) + {be- cd)(x+y)+{ce- d),

a symmetrical quadri-quadric function of x and y.

149. When x= y, F{x, x) = X, and

E(x, x) = H(x, x) = (ac- b^)x*+2(ad- bc)x^+ (ae+ 2bd- 2c^)x^

+ 2(be— cd)x+ ce— d^,

the Hessian H of the quartic X.
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One value of s is now inlinite, and the other

t=-B/X,
as in § 75 ; for, when x= y,

F(x,y)-JX^Y_0
2{x-yf ~0
{F{x,y)}^-XY -2E(x,y) _ H

-"'
2{x-yf{F{x, y)-^JXJY}-'''F{x, y)+JXJ Y X'

a substitution due originally to Hermite {Crelle, LII., 1856).

Now, since t=co , when X= 0, or x=a,

fdx\JX= \fdtlJT= \f-\ -HjX),

a

a denoting a root of the quartic X= 0; and here

{Y,x+Y,UX-iX,y+X,)JY_0
{x-yf

_^^
{Y^x+Y,fX-{X,y+X,fY

{x-yn{Y^x+ Y^)JX+{X^y+X^)JY} X^
where (? is a certain rational integral function of x of the

sixth degree, called the sextic covariant of the quartic X; the

preceding algebra showing that

T^X^= G^ or i^m-g^HX'^+gsX^+G^^O, (H)

this is called a syzygy between X, H, and G.

(Burnside and Panton, Theory of Equations, p. 346.)

For instance, ifX is already in Weierstrass's canonical form,

so that, if x= fu,

X^f'^u= ^x^-g^x-g^,

then H=-{x'+\g^f-2g^;
and now ^= ^211.,

so that p2u=(2j^^ti£2)!±!M!f.

This may also be written

1 d?

150. With y = x,

2s=ax^+2bx+c— ^a^X,
or s^

—

(ax^+2bx+c)s—(ac— b^)x^—(ad—bc)x—l{ae— c^) = 0.

With y = 0,

2s= (cx^+2dx+e- JeJX)lx%
or xh^— (cx^+ 2dx+ e)s— l(ae— c^)»^— {be— cd)x— ce+ d^=0.
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Writing F{x, y) in the first equation of § 146 in the form

r+^YXx-y)+^\Y"{x-yf,
we can find a; as a function of s and y by the solution of a

quadratic, in the form

^ ^_ s/ys/8+lY'(s-^\Y")+-i-,Y7"'
"" y 2{s~^\Y'r-laY

This method of the reduction of the general elliptic element

dxji^X to Weierstrass's canonical form ds/^S is taken from a

tract " Problemata qucedam mechanica functionum ellipti-

carum ope soluta.—Dissertatio inaugurcdis," 1865, by G. G. A.

Biermann, where the formulas are quoted as derived from

Weierstrass's lectures.

151. Changing the sign of ^Y, we find that

._ F(x,y)+JX^Y
2(x-yf

leads to the diflFerential relation

1 dx 1 dy _ I ds

^~dt~^Y'dt~~'^Sdt'

so that, putting /dxj^X= u, IdyjJY= v,

u— v= /dxl^X =^/ds/y/S,

s= p(u-v)=- .,,^_ .2

implying that u— v= when x= y, since s= oo •when^x= y

;

and now, in Weierstrass's notation,

F(x,y)+JXJY
2{x-yf

Changing the sign of v, and therefore again of F,

K^+ ^)-
2{x-yf

so that ^2u= - H^jX, p2v = - Hyj Y,

implying that u= when X= 0, v= when F=0 ; so that

u=/dxlJX, v=/dylJY,
a a

where a denotes a root of the equation X= 0.

_F{x,y)
Then f{u—v)+f{u-\-v)=

{x-yf

Piu-v)-p{u+v)=^^^^^-
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Mr. R. Russell finds, as is easily verified algebraically, that

F{x,y) H,_ (X,y+X,y F(x,y) Hy_ (Y,x+Y,Y
{x-yf X~ {x-yfX ' {x-yf Y (x-yfY

'

But, from the Addition Theorem (F) of § 144,

and therefore

{x-y)JX 2f{u-v)-(p{v,+v)'

Y^x+ Fa ^ \ f'{u-v)+f\u+v) .

{x-y)JY~ 'if{u—v)-(p{u+v)'

the sign being determined by taking v small, when y = a, nearly.

Now, ^'{u-v)-f'{u+v)=-2^0^JY,

Y tA- Y

so that, as in § 147,

^ {x—yf

" ^ (x— yY
152. When y=oo,

p2v=-\tHylY = (If- ac)la,

and p'2v = - It G^;^/F^= (a^d -Sabc+ 2h^)la^ ;

I ^'{u— v)+ f'{u+ v)_ , Y-^x+Y^ _ax+ h

2f{u-v)-(^{u+v)~~ {x-y)JY~ Ja
'

Again, from equations (F)* and (G) of § 144,

1 f'{u— i;) — g)'2t)_ 1 f'{u— v)+ i^'ju+v)_ Y^x+Y^
2 p{u — v) — p2v~2 p(u— v)— p(u+ v)~ ix— y)^Y'

and putting u= 0, and therefore x = a, we find

aa-\-h _f'v+ ip'2v

ija ~fv-<p2v

so that the quartic can be solved, when fv and f'v are known.

(Solution of the Cubic and Quartic Equation, Proc. London

Math. Soc, vol. XVIII., 1886.)
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Otherwise,
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and now

'_ ^(« -y)(a-S)+ y(« -S)ia-^)+ S(a- /3)(a- y)

(a-y)(a-,5)+(a-<5)(a-/3)+ (a-M«-y)
'

with three other values j8', y, S' corresponding to /3, y, S.

,, ,„ (aa.^+ 3ba^+3ca+ d)x+ ba^+ 3ca^+ 2da+ e ,„
Now ^S= - 1-^—To /JX

= (aa^+ Sba^+ 3ca+ d)
.'^^
'{x-af

1 / /ov \/ s\
//«(^-/3)(a;-y)(a;— 5)1= ia(a-^Xa-y)(a-5)^|^ ^3^)^^ /•

Denoting by e^, Cgi ^3, the roots of the discri/minating cubic

so that >Si = 4(s— ei)(s— e2)(s— 63),

then we may write

s-e^=ia(a-y){a-S )J^,

s-e,^ia(a-S){a-l3f^,

s- 63= |a(a- /3)(a -y)J^

;

so that, to x = a, /?, y, S, corresponds s= 00, e^, Cj. ^3 ; and then

ei= Ao^{(a - y)( <5- ^) - (a- 5 )(/3- y)},

e, = TVa{(a-5)(^-y)-(a-/3;(y-.5)},
e3= Aa{(a-/3)(y-5)-(a-y)(5-^)}.

If we interchange a and /3, and put

then to 2:= y8, y, (5, a, corresponds Si= 00 , Cg, ggi e^

;

so that s= s-^ gives a linear substitution converting

dxliJX into dzlJZ,
in which !r = a, ;8, y, 5, corresponds to z= ^, y, S, a.

If s is replaced by pu, and the same function of z by jav, then

we find from § 54 that

gives the four linear transformations which leave dx/,^X
unaltei-ed ; and corresponding to the values (a, j8, y, S) of x

we find (a, /3, y, S), {^, y, 8, a), (y, S, a, /8), {8, a, j8, y) of s

;

the first transformation being merely z= x, not a distinct trans-

formation.
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154. When, as at first,

,_F(x,y)-JXJY
2(x-yf '

and when e is a root of the discriminating cubic, then s— 6 is a

perfect square ; and we find

^/(g_ e)- J^ccJDy-JNyJD,
^

2{x— y)

where, as in § 70, the quartic X is resolved into the quadratic

factors iV^ and D^, and Y into the corresponding factors Ny

and Dy ; this can be done in three ways, cori-esponding to the

three roots of the discriminating cubic.

Thus the integral relation

^^-^^^-^^^^^-=constant
x-y

leads to the differential relation

dxlJ{N,D,)+ dylJ{NyDy) = 0,

as is easily verified algebraically, N and B being quadratics.

155. A more elegant expression can be given to these rela-

tions if we follow Klein {Math. Ann., XIV., p. 112 ; Klein and

Fricke, Elliptische Modulfunctionen, 1890) in employing

homogeneous variables x^ and ccj, by writing xjx2 for x, and

2/1/2/2 for y ;
and now

/'dx _ f x^dxj^ — x^dx^

JX J V(aV+ 46a;i3a;2

+

Qcx^^x^+ Ux-^x^+ ex^^j

Conversely, by writing x for x-^, and 1 for x^, we return to

our original non-homogeneous variable x.

Klein employs the abbreviations

ixdx) for x^dx^ — x.^dx^, and {xy) for x-^y^— x^y^;

also ix for (a, h, c, d, e)(a;p x^f; and now with

w=u—v =/dx/^X,

^, , 1 mx 2 , o 3'f
,

3'f ^
where F(c., 2/) = 12(3^22/1^2^-^^2/12/2+^22/2^;

1 my o
,
„ a'f

,
3'f 2\
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and ^8=—p'w=_ , _ (l|^^+^^0^^^+ (gl^^+ll^^)^^'^ .

4>{xyf

reducing to the above in § 153, when ty— O.

The Hessian H or H(x-^, x^) ofX or {{xj^, x^) is now given by

'dx^l "dx^

and the sextic covariant Q or G{Xy x^ by

3f 3f
8ff=

-dx-l

dH
'dxl

dx^

3(33,

where F=d

We may also use x and 2/ as the homogeneous variables in

the quantities, instead of x-^ and x^.

Thus, for example, the integraiy"f"*(fl:x^2/), where

i=x^^y+ l\x^y^—xy^'^ (the icosahedron form)

is shown to be elliptic by means of the substitution

m m
'cxxf 'dx'dy

?)x?iy' 'by^

= _ a;2o+ l%%x^yi' - 494a;i''2/i'' - 228x^2/15 - y'»

Then we can verify the syzygy

-i?Hl728f5= r^
3f Bf

3«' 'by

dx' dy

= cc^o+ 2/^"+ 522(a;252/5- icY^) - 10005 (x2yo+ a;i»2/20).

dz _ SiH'-5i'H_-5T
~ 2,m'

where T= . 1
2ir

Now

so that

z{xdy)

dz

sm
5Tz f^, , ^_5(xdy).

since

V(4^^^^- Sffi- 2l'^'^2/;-g-^

403_(;3=4.T2f-5^ provided 0^3= -6912;
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Similar reductions will show that the integrals

/H-^(zdy) and /T-'^ixdy)

are also elliptic ; also the integrals

y(x^y — xy^)-^{xdy) and y(x^ +l'ix*y^+y^)~^(xdy),

depending on the octahedron form, x^+ l-ix^y^+y^

(Schwarz, WerJce, II., p. 252 ; Klein, Lectures on the Icosahedron.)

156. The further development introduces the theorems of

Higher Algebra on the quartic and cubic, for the treatment of

which the reader is referred to Salmon's Higher Algebra and

Burnside and Panton's Theory of Equations.

Thus, H denoting the Hessian of a quartic X, and fij, eg, 63

the roots of the discriminating cubic

4e3-9'2e-S'3=0.

then 4<{H+e^X){H+e^XH+e^X) = iiH^-g^HX^+g^X^^ - Q\
where denotes the sextic covariant (§ 149) ; so that H+eX
is the square of a quadratic factor of Q.

Following Burnside and Panton (p. 345) we shall find it

convenient to put 16(H+ eX)= —P^; and then

P,P,P,=S2G,

P^, Pg, P3 denoting the quadratic factors of the sextic covariant G.

Then P^^+P/+ P3^ = - 4:8H,

since 6^+ 62+ ^3= Oj

while (e,- e^P,^+ (e,- e,)P,^+ (e,- e^P,^=
;

and e^P^^+e^^''+esP^^=-l6(e^^+e^^+es^)X= -8g^X.

Since {e,- e,)P^'= (e,- e,)P,^- (e^- e^Pi
= {V(«i- 63)^2+ VC^i- e^P^Hs/ih- es)-P2- V(ei- edPs) >

therefore each of these factors must be the square of a linear

factor, and we may therefore put

V(ei- e3)P2+ V(«i- e^Ps= 2V.
s/(e, - e,)P,- ^{e,- e,)P,= 2<,

so that Uj and % are linear ; and now

V(«2-e3)-Pi= 2'M'i'Ji2.

^{ej_-e^)P^=ui'+u^\

V(«i-«2)-P3=V-<-
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157. Mr. R Russell points out (Q. J. M., XX., p. 183) that

Hermite's substitution of i= —EjX reduces the integral

/Q-Ux to ^/{'^t^-git-g^y^dt (1)

For _=-^, and U^-g2t-g<i=
Y3'dx~ X^

so that G-^x^ -l{W~g^t-'g^)-^dt.

Again the mt&gt&l/iU^-g^t-g^Y^dt, as well as the general

integral /U'Ux, (2)

where U or U{x, 1) denotes the cubic (a, h, c, d)(x, 1)^

is again proved to be elliptic by the substitution

s^=-K^/ir\ (3)

where K or K(x, y) denotes the Hessian of the cubic TI{x, y),

given by %K(oa, y) = ' dx^ -dy^ ydxdyJ
' (4)

3Jix,y) =
32/

dy

.(5)

'dxdy' 'dy'^

The cubicovariant J of the cubic U is given by

'dx'

.
3a;'

and the discriminant A by

A = a^cZ^+4ae^-

and now we have the syzygy

J2= -^ZHA^/^ (7)

(Salmon, Higher Algebra, § 192 ; Burnside and Panton,

Theory of Equations, % 159.)

Differentiating (3) logarithmically

aabcd+UW-^W-c^; (6)
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When we know a factor, x— a, of U, then we may employ,
as in ex. 8, p. 65, the substitution

s= 0l(x-a) (9)

Putting U={x- a)(ax^+2b'x+ c')

= (a;-a){aa;2+(aa+ 36)a;+ aa2+3&a+ 3c},

then 4i2^~g^ is a perfect square, when

_ ao'-h'^ _ (aa+ 6)H4<(ac-6^)
^« ao.^+ 2h'a+ c'~ aa^+2ha+ c '

J ff„ ax^+ 2b'x+ c'— qJx— aYand now z—^= —^-^^ -^
z^ U%

-3K 3s

O^*)dz--
Sds

'aa^+ 2ba+ c'

while

(4,2^-r, /l |2g3V_ 3{(aa+ 6)(a;-a)+ 2(aaH26a+ c)}^
^ ^^'V^ ^ J

-
(aa^+-2ba+ c)(x-af

S(x-a)maV+ 2aba-2b'-+ 3ac)x+...}^
^

{aa^+ 2ba+cfU^
9/2 9(4s3+A)

{aa^+ 2ba+ cyU^ {aa^+ 2ba+ cf'

a transformation equivalent to that of § 47.

158. Mr- K. Eussell also shows {Proc. L. M. S., XVIII., p. 57),

y^ lx^+ 2mx+n -.

JiaX+BH.a'X+B'Hf'''
*^''*

'J(aX+^H.a'X+l3'Hy
where X denotes a quartic and H its Hessian, can be reduced

to the sum of three elliptic integrals by Hermite's substitution

t= -H/X.
For we may replace (§ 156)

lx^'\-2mx+n by pP^+gPg+rPg
or by 4pV(- H-e^X)+ iq^i-H- e,Z)+ 4rV(

-

S- e,X),

where p, q, r are determined by equating coefficients ; while

dxlJX^^dtlJT=\dtlJ(t-e^ . t-e^.t-e^)
;

so that the integral becomes

fpJ{-H-e^X)+qJi-H-e^X)+Tj{-H-e^X) JXdt
J J{aX + ^H.a'X + ^'H) J{t-e^.t-e^.t-e^)
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-fPs/(t-ei)+9\/it-e2)+rJ{t-eg) dt

J J{a-^t.a-^t) J{t-e^.t-e^.t-e^)

~r[ V 1 r \ dt

~J VC^-e^ . t-e^)'^J{t-e^ . t-e^fJ{t-e^ . t-e^)]j{a-^t.a'-^'t)'

the sum of three elliptic integrals.

Particular cases roay be constructed by making ^ and ^'

zero, or a and a zero ; when we obtain

J'(lx^+ 2ma;

+

njdxjX, or J'(lx''+ 2mx+ n^dx/H.

159. Mr. Russell remarks that the reduction of the well-

known hyperelliptic integral

(Ix^+ 2mx+n)dx
f-jJ(\ -x^ . l+KX^ . l + Xx^ .1-k\x^)

to the sum of elliptic integrals is a particular case of this

theorem, since the quartics

1—x^.1 — kXx^ and 1 + kx^ .l+\x^

can be expressed in the forms aX+^H and a'X+^'H,
by taking X= \+ kXx*, and therefore H= kXx^

;

and now a= l, a'=l, ^= —{1+kX)Jk\, ^= (k+ X)Ik\.

These integrals are considered in Cayley's Elliptic Functions,

chap. XVI., where x^ is replaced by x; they arise in the expres-

sion of Legendre's elliptic integral

yd^lA{^, b) in the form E+iF,

when the modulus h is complex, so that h'^= e+ if.

(Jacobi, Werhe, I., p. 380 ; Pringsheim, Math. Ann., IX., p. 475.)

Writing P for x{1 — x){1+kx){\+\x){\—k\x), Jacobi finds

fdxlJP= lQ>'+c'){F{4,, c)+F{4>, b)},

fxdxlJP= M±^{Fi<t>, c)-F(^, b)},

where
'-cV x-(^'-'X

or
T.^ Vk+ x/X I)'^ 1-x/gX

v(i+^-i+^y V(i+'c-i+x)'

and sin -
^^ ^ ^^^ ^^^ ^^y

cos .^ -
^ ^ ^ ^^^^^ _^ ^^^

,

A2/^ M (l-a^x/^X)^ A. . ,s (1+V^X)^
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Then employing the inverse function notation,

J JT
1 f J \

\+K.\+\.X ^ J
j
\+K.l+\.X \\

J{l+K.\+X)Y'' \il+KX.\+\x'V^^'' \^l+KX.l+Xx'Vf'
/xdx _

1 f 1/ ll+K.l+X.x A J
l
\+K.\+\.x \\

ji.Kk.i+K.i+xA^'^ Wi+^.i+xx'V"^" \y\+Kx.i+\x'V]'

When X is negative, then h and c are conjugate imaginaries

;

so that we can now express F{(f>, h) in the form E+iF, when

b^ is of the form e+ if.

For, writing — X for X, a,nd now writing

P for xil-xXl + KxXl-\x)(l+K\x),

,, fdx 2E fxdx 2F
then fdx ^ 2E rxd

JP J{l+K.l-\)'J JP ^(^x. 1+^.1 -X)-

In the particular case considered by Legendre, X = 1, and now

P= a;(l-x2)(l-A2),

on replacing k by k^; so that

fx^^dxjj{\ -a;2. 1 -kV)
can be expressed by elliptic integrals.

Mr. R. Russell employs the substitution

y = Axl{\+Bxf,
and now
r dy _ r A{l—Bo^dx

JJ{y.\-y.\-ay)J J{Ax{{\+Bxf-Ax){{\^BxY-<TAx)-^

so that, putting

therefore B^= /c^X^, B=± J{kX).

Taking P= V('fX), and

(1+Bxy-- Ax= {1-x)(1-k\x),

{l+ Bx)^-a-Ax={l+Kx){l+\x),

then 2Jk\-A=-1-k\,
2jK\-a-A=K+ \,

or A = {\ + jK\f, <yA=-{jK+ J\f;
and taking B= — J(kX),

then ^=(l-^,cX), <yA=-{jK-J\f.
G.E.F. L
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160. Mr. Roberts's integrals {Tract on the Addition of the

Elliptic and Hyperelliptic Integrals, p. 53)

/(A + Bx')dxlJQ,

where Q is a reciprocal quartic in x^, say

Q= a!x?+ ibx^+ 6ca!* +4!bx^+a

or aQ= (ax^+ 2hx^+af- {2a^+W- 6c)x*,

furnish another particular case of Mr. Russell's theorem, since

Q can be expressed in the form

where X and H are in their canonical forms,

X=x^+6mx^+ l, H=mx'^+(l-Sm^)x^+m.

Or we may put a;+ x"^= u, x— x~''- = v, when the integral

becomes
,

^A{U+V) + \B{U- V),

jj_ r du
•J isj

where

-/:

^{a'M,*-4{a-6K+ 2a-86+ 6c}'

dv

Thus l+cc8= (l+ V2a;Ha:*)(] -J2x^-\rx^y

= {X+J2H){X-^2H),
where X=l+ x\ H=x^.

/'A + Bx^

sj\}- -tX )

is reduced to elliptic integrals by a substitution, such as

2/= (l+CC*)/x2;

and then becomes

Another particular case of the general theorem occurs in the

reduction of the integral

f{lx+m)dxj^R,
where i? is a sextic function, the roots of which form an involu-

tion, and whose invariant E therefore vanishes (Salmon, Higher

Algebra, 1866, p. 210).
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This invariant E is the one tabulated in the Appendix,

p. 253, Higher Algebra, where it occupies thirteen pages.

The sextic covariant (? of a quartic X is a specimen of a

sextic of which the roots form an involution; and writing

32Gor

P1P2P3= {a-^x^+ 2\x+ c^{a^x^+2b.^+ c^ {a^x^+ 263a;+ Cg)

= a-^{x— Q-y.x— (l)-^a^{x— 63 . a;— <p^a^{x— Og.x — ^3),

then since the squares of Pj, P^, P3 are linearly connected by

the relation of § 156, therefore P^, Pj, P3 are mutually har-

monic, and any one is therefore the Jacobian of the remaining

two ; this leads to the three relations

Now ^= ^~^i ^-^1 ^-^2 a^-^2 ^ -^3 ^ZL^3
p X— (p-^' X— 61' X— <j)^ X— Q^' .<:— ^3' X— Q.^'

are the six linear transformations which reduce

J~JX
^^ ^®g^"<l'^®'^ canonical ioxm

J-j-^^^ QC^E)'
as in § 74 ; so that if the quartic A' is resolved into the

quadratic factors N and D, we may write

N=p{x-ef+ q{x-<j>f,

l)= F(x-6y+ Q{x-<j>f.

Now JSF/D is maximum or minimum when x= 6, or 0.

Making P^ Pg, P3 homogeneous by the introduction of y,

which is afterwards replaced by unity, so that

P= (ai, 61, c^)(x,yy, ...,

then the three distinct linear transformations of § 153, which

leave dxj^X unaltered, are found to be

dPj-dP, dPJdP, dPJdP,
dyj dx' dyl dx' dy/ dx'

(R. Russell, Proc. L. M. 8., XVIIL, p. 48.)

where Uj, Wg are defined in § 155, is reduced by the substitution

y^= uju^, ov p{x-tj>)l{x-e),

to the form /^^+Py^ ,
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This integral has been considered by Richelot (Grelle,

XXXII., p. 213) ; and by differentiation we find

according as y^ is less or greater than ^2 — 1 ; and thence the

integration can be inferred; the value of k to be taken is

^2-1 or tan22J°, when it will be found that K'/K=y/2.

161. As further applications, consider the integrals

/(A<p)-id4,, /(A^)-U<p, /(A</>)-idc/>, /(A,p)-^d,j>,

where A(f>= ^{l-bhm^tp).

(Legendre, Fonctions elliptiques, I., p. 178.)

Putting A0= x^, and 1 — &2 = gZ^ then

the integration required in the rectification of the Cassinian

oval, given by

V2= /S^: or r*-2aVcos20+a*= /3*,

where i\, r^ are the distances from the foci (±a, 0).

The expression 1 — a^.x^— c^ can be expressed by H'^— X^,

where X= <id^+ c, H={l+c)x^;
and now the substitution y=X/H gives

''+^=^i(^ + <')y+ ^'>/^}' x-'^=J{(l + c)y-2jc};

so that /(A^)-id<p

_1 f dy 1 r dy
''2jj{{l + c)y-2jc}Jil-y^)+Uj{{l + c)y+ 2JcU{l-y^}

^V(2 + 2c)r \{1+Jc)x' J{2 + 2c)j
'=''

l(l-Vc)xV(2 + 2c)iJ

by means of the results of §§ 39-41.

In the Cassinian

2ar 2ar
'

dd^ r^-aHjg'
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(fe_ 2aV2

'=/i\/{{a'+ /3'f-r'}J{r'-(a'-/3Yy
r

Now, if we put

then s= ay{a2+ ;82)2cosV+ (a^-/8')'sinV} -*c^^

Similarly ^(A^yHcp
=f^j^^ _ ^^f^^, _ ^^

2JcJJ{{l+c)y-2Jc)J(l-y^A 2JcJj-
which can be expressed in a similar manner.

Again, substituting A^^ = a;^ then

particular cases of the preceding general integrals.

Mr. R. A. Roberts {Proc. L. M. S., XXII., p. 33) has shown

that /(Ix+ m)(ax^+ 26x3+ c) " * °' " i^^

can be expressed as the sum of elliptic integrals, not always

however in a real form.

Mr. Russell shows that if x— di,x— 62 are the factors of Pj,

a quadratic factor of the sextic covariant, then

'Ix+ m,
J

is reduced by the substitution

y^=p(x-d,)/{x-e,)

and this again by the substitution

to the form f^fr^^'^'^ll^^T^f,^^'

two elliptic integrals, not necessarily however in a real form.

f-JJ
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Abel's Theorem applied to the Addition Equation.

1G2. Euler's Addition Theorem is now found to be a very

special case of a Theorem of great generality, due to Abel, the

method of which we shall employ here, in the very limited form

required for the Addition of the First Elliptic Integrals.

Consider the points of intersection of the fixed quartic curve

whose equation is

y'=x, (1)

with any arbitrary algebraical curve whose equation in a

rational form may be written

i{^,y)=o (2)

By continually writing X for y^, we can reduce equation

(2) to the form P+Qy = {)i (3)

and now the abscissas of the points of intersection of (1) and

(2) are given by the equation

P+QJX=0 (4)

or, in a rational form, P^— Q^X= (5)

Denoting the degree of this equation (5) by fi, and its roots

by cCj, x^, Xjx, Abel puts

yj^==P^-q'X=C{x-x^,{x-x^ ...{x-x^), (6)

and now he supposes the roots of this equation to vary in

consequence of arbitrary variations in the coefficients of the

terms in equation (2), corresponding to arbitrary changes in

the shape and position of this curve ; the coefficients in

equation (1) are however kept unchanged.

If 3P, 3Q denote small changes in P and Q due to the

changes in the coefficients, and if dxr denotes the correspond-

ing change in any root x^ of equation (5), then

yp-'xr . dXr+ 2PSP- 2QSQXr= 0,

or, making use of equation (4),

^'Xr . dXr- 2{QdP- PSQ) s/^r= 0,

dxr _^QdP-PSQ^ ex,

suppose.

Now, if the degrees of P and Q are denoted by p and q,

then the degree of 6x is p+ q; and we shall find this is

always at least one less than /x— 1, the degree of yj^'x, or two

less than fx, the degree of \Jrx.
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For if in equation (3), P'^ and Q^X are of equal degree, then

q=p— 2, and fjL= 2p; so that /j.—p— q= 2; and /x—p— q is

greater than 2, if q is less than p— 2.

But if g" is greater than p—2, then the order of xj^x is given

by that of Q^X, and therefore /i = 2g'+4, while 'p= q+ l at

most ; so that /x — 2? — 3= 3 at least.

Since x9x is thus of lower degree than -xf/x, we can split the

fraction x9xj\frx into a series of partial fractions, such that

yfrx~ :^^ \l^'Xr(x— X,.)'

and now, if we make x = 0, we find that

^k-'' (^>

a theorem in Algebra due to Euler ; otherwise stated as

^^{X,.-X^){Xr-X2)...*...{X,-X^)~ '

^'^

provided m is less than /x— 1, the # marking the position of

the missing factor x,-— Xr.

Applying this theorem to equation (7), we find

'gf?.r,/^Z,= 0, (10)

so that, if, in consequence of any finite alteration of the

coefficients in equation (2) or (3), the roots of equation (5)

become changed to x\, x'^, ..., x'/i, then

y^dxJJX^+y^'dxJJX.,+ ... ^f'^dx^= 0, (11)

the Theorem of Abel, as required for present purposes.

It is the combination of the theory of Integrals and of the

theory of Algebra which furnishes the key of Abel's Theorem
;

the algebraical laws are expressed very concisely by a single

equation (5), of which the variables are the roots, and whose

coefficients are not independent, but are connected by a number

of relations.

Thus, if we take P of the p* order, and Q of the order p— 2,

we have a pleanis of ju. or 2p equations of the form (4)

and the elimination oi a, /3,y, ..., y', ... leads to a determinant

of 223 rows, each row of the form



168 THE ALGEBRAICAL FOEM

163. Suppose for instance that (2) is the parabola

2/ = aa:2+ 2/3a!+ y, (2) or (3)

then equation (4) becomes

ax^+2l3x+y-JX=0, (4)

and (5) becomes the quartic equation

(ax^+ 2^x+yy-X= 0, (5)

Denoting the roots by Xj^, x^, x^, x^, then the elimination of

a, /3, y leads to the determinant

ajj , Xj, 1, x/"^1

as the integral relation, corresponding to (//i = 4),

JX^ iJX^ ^Xg JX^
By making a= »Ja, so that the parabolas are of constant

size, or bj^ writing equation (5) in the form

{ax^+ 2/3a;+ yf-aX= 0,

one root, x^ suppose, becomes infinite ; and now
4a(/3- h)x^+ (4/32+ 2ay- ^5ac)x'^+ 4(/3y- ad)x+ y^- ac= 0,

so that

^^- b)(x^+X2+ ajg) = 6c- 2y- 4/32/0,

= 2ax^^+ 4</3x^+6c- 2JaJX^- i^^/a.

or 4:(^-b)(x^+x^) = 2ax^^+ 4:bx^+ 6c-2^aJXg-4</3^/a.
Now the two relations

ax^^+ 2/3x1+ y- ^aJX^= 0,

ax^^+ 2^X2+ y-JaJX^= 0,

give by subtraction

(Xj- X2){a(x^+ x^)+ 2/3} = Ju{JX-^^ —X^,

= a{x-^^+x^'^+ ^h{x-^+x^+G,
where G= 2ax^+ 4^bx^+ 6c

—

2jaJX^ ;

and we thus obtain Euler's original integral relation, the

general integral of the differential relation

dxJ^X^+dxJy/X^= 0,

when C is constant ; and a particular integral of

dxJ^X^+dxJiJX^+dx^lJX^ = 0,

when ajg is considered as variable.
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164. Whea X is in Legendre's canonical form 1 — j;-. 1 — A^'
then Abel takes P = ax+x^, Q = b;

and now equation (6) becomes

xlrx={ax+ x^y^-h^l -x^){1-kV)
= x«- {bV- •2a)x*+ (¥+ 6V+ «')«'- b''

= («2_ x^^)(x^- x/)(a;2- x^^),

where x-^^+x^^+ Xs^ = b\^-2a,

x.^'x^^+ x^x-^+x^x^= 62+ 6V2+ a^,

iXj-i (/.-g tt/O —* L/ *

But a and 6 are determined by the equations

ax^-\-x-^-\-bX^ = 0, aa;2+.r/+6X2= 0;

so that iJ^v^MjZ^l,

and therefore, as in formula (1), § 116,

Also i_,t,M-cc22'l-'a;32 = l-6V+ 2cH-6H6V+ a-^-6''

= {l + af,

while .tj^+ a'j-

+

x^— k^x-^-x.^x.^^ = — 2a,

so that

= -2^il-x,-.l-x,'.l-x,^),

or (2

-

x^^

-

x/

-

Xs'+A^-xMi-f = 4(1 -a'i2)(l - a;/)(l - .ij^),

which may also be written

^(1- CCg^) = ^(1 - X^' . 1 - X^^)±XjX^^il - K-X.^'),

as in § 119, with x-^ = snu, a-2 = snw, x^= sn(u±v).

This, with Xj = sn iAj, a'o = sn u^, x^= sn u^, may be written

1 — cn%i— cn-u.2 — cn^ttg+ 2 en w^cn u^cn Wg= K^n^jSn-u.gSn^'M's

;

where u-^^+ U2+ Ug = 4<K,

(§ 131); and, with a triangle of Class I., is equivalent to the

formulas in Spherical Trigonometry

1 — cos^a— cos^S — cos^c+ 2 cos a cos b cos c = K^sin^a sin^i sin^c

= sin^J. sin^^ sin^c= sin^a sin-i? sin^c = sin^a sin^i sin^C.

165. To obtain the Addition Theorem for Weierstrass's

functions, we consider the intersections of the cubic curve

i/= 4:x^-g^x-g^, or X, (1)

with an arbitrary' straight line

2/ = aic+ /3; (2)
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Now, if Xy x^, x^ denote the roots of the equation

4!a^-g2X-gs-iax+^f = 0, (5>

then ax^+^+ sJX^ = 0,

so that _ V-^l V-^2 Q -^lV "^ 2 ^ISI ^ 1

Jb-t ^~ tAjt)

hP
lAy-t lAJa

x,+x,+x,=W=l{^l^^-^^\

1, x^, JX^
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Now, if the constants a and /3 receive small increments

Sa and S^, then

Vr'a;Ai+ Ko-Xy,+^f{x^8a+ S^) = 0,

and \l/x^ = (a^— A){x.^— x^)(x^— x^),

so that ^^-3.3 "/'^«+ ^g
^, (7>

and

cfej cZaig dx^_ / Xj x^ ar, \ ^a—^H o"! 2 — ''v
', ' ' /~~3

—

4yi tfc) tin \iA/n tC-i . iX'-i U/o X-t Jun^Xn—Xn Xn''~Xn,Xa X-i/ CL -^1-

^<-^ -H

' ^—^ )A
\i//o it'-i • w-i tCg tJu-i Jb() m JCq JUn lA/n Jbn , JUn JU-t ' Ot -^J-

= 0, f (10)

and the sum of the three integrals is a constant, which can be

made to vanish by taking for the lower limits a root of the

equation 3/ = 0.

In the particular case of the cubic curve

a;3+ 3/3=l,

the relation expressing the collinearity of the three points is

a;ia'2^3+ 2/12/22/3 =1-

Now, as in § 145, with g^= 'd, ^'3= 1, and

and, by symmetry, with

„,._ a-2/¥ „v__ /3l±2/

we find from (F) § 144, after reduction,

so that «+ «= «, a constant.

With ^a=l, then (§ 149) p2a = l; so that (§ 62)

p2a= ^(2o}.2— a), or a= ^ai2.

We may therefore put

and express x and y by functions of t.

For any other arbitrary value of a, the integral relation

connecting x and y will be, by § 145,

(l-a^){l - 2/8)(l -z^)= (1 -xyzf ;

and treating z as constant, this leads to the differential relation

(l-x^y^dx+ (l- y^yUy = 0.
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We can put
¥(l-x^)i (1-V^)^ (l-;s^)l

^^=13^' ^^•=S:4r' ^^=1:::^'

where u+ v+'w= ;

and pw=l, for the value s= oo ; and then

a;3+ 2/S= l.

167. When the quartic X is resolved into two quadratic

factors N and D, we may replace (1) by the quartic curve

y'=N/i>; (1)

and now equation (4) is replaced by

PJD+QJN=0; (4)

so that equation (5) becomes

P^D-QW=0 (5)

The elimination of the constants from the plexus of equations

determined by the roots of this last equation (4) leads to

determinants, whose rows are of the form

Xr^s/^r, X,.P -VA-, • • , Xrl^JSr,., X,.1 "V"^" " • •

For instance, by taking P and Q linear, so that the variable

curve (2) or (3) in § 162 is a hyperbola, we can obtain the

integral relation of § 154 in the form

V^iVA-ViV^^VA x/-^3v/J.-x/^4x/A -,.onstant.
•//( ^^ t//p fcCo t^A

(W. Burnside, Messenger of Matheinatics.)

We have taken X as a quartic function of x, so as to apply

to the elliptic functions, but Abel's theorem holds for any

higher degree of X, the method of proof being exactly the

same; and, according to Klein, we resolve X, supposed of

even degree, into factors N a,ud D, differing in degree by or

a multiple of 4, when we wish to make use of the fixed curve

1 68. The reader is referred to the treatises of Salmon or of

Burnside and Panton for the proof of the Theorems in Higher

Algebra quoted here ; they are easily verified, however, if we
work with the quartic in its canonical form

U= x^— 6m a;^2/^+ 2/*j

when 11= — mx"'+ (1— 37n^)x^y^— tny^,

G = h(l-9m'^)xy{x*-y*).
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The following examples, taken from recent examination

papers, will illustrate the character of the algebraical work.

Examples.

1. Denoting by U the binary quartic, reduced to its canonical

form, x'^—Qmx^y^+ y^, its quadrinvariant and cubinvariant by g^
and g^, and its Hessian and sextic covariant by H and G,

prove that

(i.) 4m3-gr2m-.g3= 0;

(ii.) H+m ?7 is a perfect square

;

(iii.) iH^-g^Hm+g^m+0^^0;

^^^ K^' -'^)-^QHigH-g,U)ig,H+Sg,U);

^^> ^W; -^y 3^ 3^+3^<W =32(g,U^-Qm);

(vii.) the Hessian of Xf/'+^ff is

(X^- T\g2f^')H+ (ig,\/x+ igy) u,

and the sextic covariant is

1(4X3 _gr,X;u2_^3^3)(?.

2. Denoting the roots of ie^—g^e—g^ = Q by e^, e^, e^, prove

that the roots of (^^+l5'2)^±29'3!C= ()

are of the form V(^2^s)+ Jih^i)+ s/(^i^i)-

3. Denoting the discriminant, Hessian, and cubicovariant of

a cubic I] by A, -ST, and /, prove that

A272= J2+ 4^3

(Work with the canonical form U=ax^+ hy^.)

Denoting the same functions of Xt/'+^G by A', K',J', prove

that A'=(X2-/x2A)2A,

J'= (\^-f,^A){\J+fjLAU).

4. Prove that X and F in § 139 have the same invariants g^

and g^ (Bumside and Panton, 1886, p. 418).

5. Prove that, in § 156,

J{e,- e,)P,+ J{e^- e,)P,+ ^(e,- e,) P,

is the square of a linear factor of X.
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6. Discuss the properties of the quartic X' in § 153, whose

roots are a, /3', y, S'.

7. Prove that (§ 160) 6^, ^y ; O^, ^sl 0^, <p2 ; define an involu-

tion of the roots of the sextic covariant G (R. Russell).

8. Prove that the cubic substitution

t/ = - (ba^+ 5cx^+ 2dx+ e)l{aa?+ Zha?+^cx+d)= - XJX^

, dy _ 2dx
™^ ^^

>.K92Hy- g^ Uy)
~ J{g.2B^+ Sg^UJ

where 11^= (a, b, c, d, e)(x, 1)^

(Hermite ; Crelle, LX., p. 304 ; R. Russell, Proc. L. M. S.,

XVIII., p. 52.)

9. Integrate / ——^ —ry.

10. Prove that, with 's= <pu,

f'2u= (2s«- fsrjs*- lOg^gs'- |g^2V_ ^g^^g- g^^+hgiW^'^ \

V(jp2u- e) = - (s2- 268 - 2e2+ Ig^lf'u

;

Ji'piu- e^) + J{^1u-ep)=- 2(s- ea)(s- ep)lf'u ;

S ^~ 6-1 S ^~ 60 o ~~ Co

11. Prove that, if

(i.) p{v; -20, -40) =.5, then ^2v= 0, f2v= --|, 0v= |, ..

(ii.) ^(v; -60, -10) = 5 0, X .. aa

<iii.) p(v; -15, 19)= -5- ^ aaa
a >

•••

2"j T> ~S'S~> ••

12. Prove that

(i.) y{A+Bx)dxly is elliptic, if 2/^= (l— a:;^)(a-|-3a;— 4a3*)

;

— is elliptic, if

K^, 2/)= (a. b> e> f> 9, h){x\ y\ 1).

(W. Burnside),



CHAPTER VI.

THE ELLIPTIC INTEGEALS OF THE SECOND AND
THIRD KIND.

169. The Elliptic Integrals, and thence the Elliptic Func-

tions, derive their name Elliptic from the early attempts of

mathematicians at the rectification of the Ellipse.

It was some time before mathematicians perceived that the

simple integral to begin considering is

which has not originally such a special connexion with the

ellipse; but the name Elliptic Integral has nevertheless been

retained generally for all integrals of this nature.

To a certain extent this is a disadvantage ; not only because

we employ the name hyperbolic function to denote coshu,

sinh 11, tanh u, ...,hj analogy with which the elliptic functions

would be merely the circular functions cos^, sin 0, tan^, ...;

but also because it is found that the elliptic functions are a

particular case of a large class, called hyperelliptic functions,

but included in a larger class, called Abelian functions after

Abel, which, beginning with the algebraical, circular, hyper-

bolic, and elliptic functions of a single argument u {p= l)

are in the general case the functions ofp arguments which are

met with when we consider the integrals

/(I, x,x\..., 03^-1) dx/^X,

arising in the linear transformations ofydx/^X, in which

X is a rational integral function of x of the degree 2p+ 2;

for now the linear transformation {lx+ m)/(l'x+ m') converts

fdxlJX into {lm'-l'm)f{l'x^m'y-HxlJX.
175
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170. Legendre's elliptic integral of the second kind has already

been defined in § 77; and denoting it by E<j), then the length

of the arc BP of an ellipse is given by aE^, where the arc BP
and the excentric angle of the point P are both measured from-

the minor axes OB, and now the modulus is the excentricity of

the ellipse.

The quadrant of the ellipse BA is given by aE, where,

as in § 77, E denotes /A0c?0, the complete elliptic integral of

the second kind, in which <}> = ^tt.

The perimeter of the ellipse is therefore ^aE, the same as

that of a circle of radius ciE/^tt.

The periodicity of sin (p and A^ shows that, as in § 14,

E{ir+<i>)=JL<i,d(l>=J+1 ='iE-^E,p,

and generally E{mTr+ <j>)= 2mE+E(p,
when m is an integer.

Expanded in ascending powers of the modulus k,

A^ =(l-AmV)*=l- ^ 2.4.6... 2n S^i^'n=l

SO that, employing Wallis's theorems of integration, as in § 11,

E=/A^d^ =Wll- i:(2.4.6- 2n ) 2^^J'
whence the numerical value of E can be calculated.

Tables of the numerical values of E^ for every degree of ^
and of the modular angle are given in Legendre's F.E., II.,

Table IX. ; while the values of log E are given in his Table I.

for every tenth of a degree in the modular angle.

We reproduce this Table of log E, and of log E', correspond-

ing to the complementary modulus k, to 7 decimals, and to

every half degree in the modular angle Ja, corresponding to

the values of logiT in Table I., p. 10.

• 171. By differentiation and integration, we prove that

d(E(j>\_ F^ d^, Tp.\_fj4__E± K^ sin cos 96

and therefore, with (p = hw,

d{E\__K £ jz\_^
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We can now prove Legendre's relation, that

EK'+E'K-KK' is constant, and =^7r;

for denoting it by A, we find that dA/dK = 0, so that A is

independent of k ; and taking /c= 0, then

172. In Jacobi's notation, with ^ = amit,

E(j)=Eam u =_fdn^iidu ;

and now, from the quasi-periodicity of am u (§ 14),

E{mTr+ (p) =Eam{2mK+u) = 2mE+Ea.m.u,

where m is an integer.

We may therefore, as in §78, separate Eamu into two

parts, one the secular part, increasing uniformly with u, at a

rate 2E per increase 2K of u, and the other a periodic part,

denoted by Zw in Jacobi's notation, and called the Zeta

function ; so that

Eamu=Eu/K+Zu,
or Zu=/(dn^u-EIK)du.

The Addition Theorem for the Second. Elliptic Integral.

173. A well-known theorem, due to Graves and Chasles,

asserts that if an endless thread, placed round a fijced ellipse, is

kept stretched by a pencil, the pencil will trace out a confocal

ellipse (fig. 22). (Salmon, Conic Sections, § 399.)

If the excentric angles (measured from the minor axis of the

ellipse) of the points of contact P, Q of the straight parts of

the thread PR, MQ are denoted by ^, t/^, so that the

a,TcBP= aE^, a.vcBQ= aE\}r;

and if we put = amtt, •\/r= amt;, the modulus k being the

excentricity of the ellipse, then, as asserted in ex. 6, at the end

of Chap. IV., R moves on a confocal ellipse, when u— vi&

constant, and conversely.

For the coordinates of R being given by

_ cosi/r— cos^ _ , sin ^ — sin >//•

~^
8m(<p-\J/) ' ^~ sm{(p — \{r)

'

we find from Jacobi's formulas (4), (5), and (31), § 137, replacing

u and V by ^(u+v) and ^(u — v),
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_ cnv— cnu _ s^^s^d-^d^_ Sjd^^ snl(u+v)dB^(u— v)
CC— Ct~: 7 r— Cfc 7 — Qj — Oj 7-7 ^ ,sm(amM—amv) s^c^d^ c^ cu\{v,— v)

sin(amtt— amt;) 8202^1 Cj cu.\{u— v)'

Fig. 22.

Therefore

-cd J(u— 'y)= sn|(u+ 'y), ^cn J(u— ?;)= cni(u+v);

and (x/a)H(2///3)^= l,

where a = adc|('ii— i;), ;8= 6nc J(tt— v);

so that o?-^= a'^-h\

and therefore ii! describes a confocal ellipse, if u— w is constant.

If u-\-v is constant,

we find (xja'f-{y/^'f= l,

where a = a/c sn |(u+ v), /3'= aK en |(ii+ ?;),

so that a'2

+

/3'^=aV= a^- 6^

and i2 therefore describes a confocal hyperbola (MacCullagh).

To realise mechanically this motion of R on the hyperbola,

the threads RP, RQ must pass round the ellipse, and be led,

in the same direction, round a reel moveable about a fixed

axis at C; so that, as the reel revolves, equal lengths of thread

are wound up or unwound.

If the hyperbola starts from the ellipse at L, then

PR- arcPL= QR- arc QL.
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If the threads are wound in opposite directions on the reel,

then E will describe a confocal ellipse, as at first ; but in this

case the reel may be suppressed, and the thread merely made

to slide round the ellipse, as in the theorems of Graves and

Chasles.

Moreover, it is not necessary that the tangents BP, BQ
should proceed to the same ellipse, but to any two fixed con-

focals, and the same theorems hold.

If tangents B'P', B'Q', are drawn to the ellipse from any

other point B' on the confocal hyperbola BE', forming with BP,

BQ the quadrilateral BvB'r', then r, r' lie on a confocal ellipse,

by the preceding theorems ; and now a circle can be inscribed

in this quadrilateral whose centre is at T, the point of concourse

of the tangents to the confocals at B, r, B', r; for TB, Tr, TB',

Tr' bisect the angles of the quadrilateral; (Salmon, Conic

Sections, § 189).

If B is brought up to L, the circle touches the ellipse at L
;

so that the point of contact of the circle inscribed in the area

bounded by two tangents and the ellipse is at the point where

the confocal hyperbola through the point of intersection of the

tangents cuts the ellipse.

174. Putting u-v=^w,OT F(p — F\}r= Fy,

then when v = and Q is at B, u=w and P is at G where

<p = y suppose; while B will come to D on the ellipse BD, where

it is cut by the tangent at B.

Now, since

PB+BQ-&rc PQ =BD+DG-arc BQ,

or arc PQ-a.TcBG=PB+BQ-BD-DG;
therefore E^ — E\p-—Ey= a certain trigonometrical func-

tion of (p, yp-, y, which is found to be —Ain ^ sin i/r sin y

;

this is the Addition Theorem for the Second Elliptic Integral.

-V T>T,9 9( , cos\L—cos d>Y ,
, „

fsin rf>-sin i/r "1^

For PB^= a^sm(f> ^^- r^} +¥{ -V, rv-cosd)^
\ ^ Bm{<j)-ir) J i sin(^^-i/r) ^J

_ ((X^cos^0+ b^sin^cj)) { 1 — cos(^— "4^)Y

sm\<p— \jr)
'

,1 , TIT, A 1— COs(d) — l/r) „^ . ,l—COs(d> — \Jr)

SO that PB= (XAd)

—

. ,y ,\ ,
BQ= aAi^

—

. ,/ ,\-
,^ sm{^— \jy)

^ sin(^— l/r)

1-1 TiT^ 1— COSy -r,^ . 1 — COSy
while BD = a—-. ^, I)Q= aAy—-. ^.

siny ' smy
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Therefore, by § 121,

PR+RQ-JBD-DG = a--t:^'^{cosy-cos(<i>-yJ^)};

=a^—^{cos <p cos i/f+ sin <p sin i/rAy— cos(^ — i/f)}

= — a—

:

sm d) sm \lr
sin y ^ ^

= — osK^in <p sin i//- sin y.

In Jacobi's notation this is written

E ajoau—E am v— Eam.{u— v), or Zu— Zi;— Z(u— v)

= — /c%n u sn i; sn(u— v).

175. Putting V= ly, and therefore u = 2ty, then

^am 2w— 2Ea.mw= — /c%n 2'M;sa%,

or changing w into ^li'.

Then PR+BQ-avc PQ=BD+Da-iirc BG
,, , , ,1— cn'W „= a(l+ dn w) aE am at;
^ ^ snw

,T , J , sn w , 1 — dn iw n „ ,= a(l+dni{;):r- hc^sniw ^r-; 2a -earn Iw
^

^l+ cn-w l +cnw ^

= 2aU Ea.mlw) = 2a[—^—=—^ £" amity ;

Vl + en ty '' / \ cn^w "" /
'

and now en ^w, or en ^(u— v)= hj^, where ,8= OK.

176. A ready way of proving the Addition Theorem is to

take the spherical triangle of Class II., in which

^=am'Up B= a,m.v^, G=&m.v^, ,

where v-^+ v^+ v^= 2K,

and to vary all the sides and angles, keeping k constant.

Then dv-^+ dv2+dv^=0,

or dA/cos a

+

dB/cos b+ dG/cos c = 0,

or cos 6 cos c . dA+cos ccosa . dB+cos acosb . dG= 0,

or (cos a— sin b sin c cos A)dA + (cos 6 — sin c sin a cos B)dB

+ (cos c— sin a sin 6 cos G)dG= 0,

or cos adA + cos 6cZ5+ cos cdG

= «:2(sin5sin CcosAdA + sinOsin^cos5cZ-B+ sinJ. siniJcos GdG)
= A:^(Z(sin A sin B sin 0).



182 THE ELLIPTIC INTEGRALS

Integrating,

E(A)+ E(£)+E(0) -2E=Khm A sin B sin G,

since ycos adA =fj{l - K^sin^A)dA = E{A),

and v^= makes 5= 0, and ^ + C= tt, or E{A)+ E{C) = 2E.

In Jacobi's notation

EsLmv-^^+ Ea,mv^+ Esimv^— 2E= /c^sn v-^sn v^sn v^,

or Zt;^

+

Zv^+ Ziig= /c%n i>j^sn i^^sn I'g,

with v-^+ v^+ v^= 2K.

With tt+ v+ w= 0,

Zu+Zv+Zw= — K^sn u sn V smu,

or Ztt+Zv — Z(u+v)= K^sn w, sn v sn(u

+

v).

Fagnano's Theorems.

177. The particular case of the Addition Theorem, obtained

by putting y= i'7r, or u— v= K, was discovered by Fagnano

(1716), and leads to his theorems, namely, that if P, Q are two

points on an ellipse of excentricity k, whose excentric angles

^, ^, measured from the minor axis, are such that

A(pAyp'= K, or tan ^ tan i/^ = 1/k'= a/&,

then the arc BP+ arc BQ— arcAB= aAin sin i^,

or arcBP— arc AQ= a/c^sin ^ sim//- =Ax'/a

;

/yi2,-vi 2 /-/^

and then tan^^ tan^^'= —

^

5^^-^ 75-=
j;^,

or AV^-a\x^+ x'^)+ a^= Q.

On reference to fig. 23 it will be found that, if T, OZ are

the perpendiculars on the tangents at P and Q, then

(i.) AOZ^cf,, AOY=ir,
(ii.) arc BP - arcAQ =PY=QZ=VQ- PT,

so that VZ=PT, and PF or QZ=Ax'ja;
the tangents at P, Q meeting OA, OB in T, V;

(iii.) OP2-OQ2= 0F2-O^2. ^i^.) OY.OZ=ab.

When P and Q coincide in F, then P is called Fagnano's

point ; and then

(i.) the arcPP-arcJ.P=a-6;

r, A / r ja+6 ya+b
(iii.) ZP=a, FH= b,FG=a-b, OG=J{ab);
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(iv.) the tangents at P, Q intersect in R on the confocal

hyperbola FRD, through F, D, whose equation is

a

(v.) the tangents at P and Q' intersect in R' on the confocal

ellipse EBH, through K, D, H, whose equation is

t+y'cL+ h;
a

(vi.) PR- arcPF=QR- arc QF
;

(vii.) the circle inscribed in the region bounded by AD, DB
and the ellipse AB touches the ellipse at F; etc.

The proof of these theorems is left as an exercise.

o s A H
Fig. 23.

178. Denoting the arc ^Pby s, the perpendicular OFon the

tangent at P by f, the angle ^ F by t//-, then by Legendre's

formula

^ =^+», while PF=-^
so that s+PF= ypd\Jr

;

and in the ellipse

p= ^(a^cos^i//-+ S^sin^i/r) = aAi/f

,

while

PY= — dpjd-yjA = aK^sin yp- cos i/r/Ai/^= a/c^in ^ sin i//-

;

so that s+aAin ^ sin i/r= ayA-\}rd\}f= aExf/-= arc BQ,

or arc BQ— arc AP= aK%in sin i/r,

as at first, in Fagnano's Theorem.
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Gonfocal Ellipses and Hyperbolas.

179. If we put

x+iy= c sin(<p+ i6),

then a?= c sin ^ cosh d, y = ccos(p sinh 6 ;

the equations of a system of confocal ellipses and hyperbolas,

since cosh^0— sinh^fl = sin^^+ cos^^= 1.

so that, in an ellipse BP, along which is constant, the

arc BP= c/j{cosh^Q- sin^<j))d(p= aE^
as before, with a= c cosh 9, and the modulus equal to the

excentricity sech 6.

For the confocal hyperbola, along which is constant, the

arc is given by

c/s/(cosh20- cos20)cZ9,

which can be expressed by elliptic integrals of the first and

second kind, of Legendre's form.

Putting

a= c sin 0, h= e cos 0,

the equation of the hyperbola is

(xlar-{y/by=l;

and now the coordinates of any point P on the hyperbola may
be given by a cosec x> ^ cot -^^ ; and the tangent at P by

X V ^ -,

-cosec v— f cot y = l,
a ^ b ^

and then amh = Jtt— x>

cosh Q= cosec x, sinh 6= cot x, tanh 6= cos x> etc.

The tangents at P, and at another point Q defined by x,
will therefore meet at a point R, where

x_ cotT(' — cotx _ sin
(;)^— ;)(') 2/_sin;>^— sinx'

a cosec X cot x'— cosec x'cotx cos x' — cos x' b cosx'— cosx"

When we put

X= amu, x'
= amt;

the modular angle being (p, then as in § 173 for the ellipse.
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OoCgCvi cn J(w - v)

y_j2pAi _ "i _ cii^{u+ v)

b SjcZ^Sgdg ®A sn^{u+ v)dn^(u— v)'

and therefore, eliminating cn ^{u— v) and dn ^(u—v),

where a-
^ ^^ 6 cn K''^+-i;)^ CT cn K'>^+ v}

and a^-/3'^ = c^= a''+ h\

so that B describes a confocal ellipse, when u+ v is constant.

Fig. 24.

180. By putting u-{-v= K,-we obtain theorems for the hyper-

bola (fig. 24) analogous to Fagnano's theorems for the ellipse.

Now (§ 123) a = cJil+K), ^= cJk,
or a^= c(c+ 6), ^^= cb;

and R describes the ellipse FJ), whose equation is

.y^-
c+ b b

c.

which will intersect the hyperbola in a point F, the analogue

of Fagnano's point on the ellipse, the coordinates of which are

c sin ^^(1 + cos
<f),

c(cos ^)^.
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Now, as in § 57, with

X=Simu, x'= amv, and u+v = K,

AxAx' = a:'= cos^,

and cot;^cotp(;'=K'= cos^,

or sinh0sinh0'= /c',

and if x,y and x', y' denote the coordinates of P and Q,

x— a cosec ^= a^x/cos x', x'= a cosec x = aAx/cos x ',

y = a cot x= ffiK'tanx', 2/'= « cot x'= a/c'tan ^

;

and thus yy'=aV= c^cos^^.

Drawing the perpendiculars OT, OZ from on the tangents

at P, Q, and denoting the angles AOY, AOZ by w, w ; then

tan (0= -^= ^i-^= tan ^ cos ^= tan tanh Q = sin ^ sin x'l^X »

sin ft)= sin ^ sin
x', cosft)= Ax', sin w'= sin sin x, cos &>'= Ax-

Now denoting OY, OZ by p, p', then

P— s/(a^cos^w— fe^sin^co) = c^{sin^(p — sin^o)) = c sin 9?! cos x ',

pp'= chiTi^^cosxcosx=chm^(f>coS(j)sinxsinx'= c^coa(psm(xismoo'.

Making use of the formulas

dco dw^ dw
then

PY— arcAP =f'pdu> = c/'^(sin^^— sin^ft))c?ft)

= c/sinV cosV^^x'/Ax = c/(AV- /c'^)dx7Ax
=c(%'-;c'2^x');

also PF= c sin &) cos ft)/^(sin^^— sin^o))

= c tan x'Ax'= c/tan xAx
= c cosh sinh 0/^(cosh^0— sin^^).

181. The arc AP of the hyperbola is now expressed in terms

of an elliptic integral of the first and of the second kind ; we
can however express the arc by means of two elliptic integrals

of the second kind, or by two elliptic arcs by means of Lan-

den's transformation (§ 67).

We shall find that if we put

oi>-\-x— 2^^. or sin(2i/r—
x')
= sin ft) = sin ^ sin

x',

then tanx-= .

^^"^^,,
, sec x' =^U^^5#%^,'^ sin^+ cos2Yr '^ sin^+ coszi/r

, „ 4sin<A , 1 — sin(6
where y = ,^ . \\'n y = , , \ ;

' (l+sin0y ' l+sm^
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sin '- sin2i/^
. _ sin sin

2\f/-

^ (1 + sin 4,)^{^]r, y)'
^^° '^-

(l + sin</,)A(^,y)'

and
^'^ ^^X ._

^dj^

^(sin^0 — sin^ft,) A^' (1 + sin 9!))A(i/r, y)'

cos (0+ v'(siiiV— sin^to) = Ax'

+

k cos x'
= (1 + sin 0)A(-</r, y)

;

so that

(1+sin ^)Mir, y)cZV^=^^^^^±Jp^V

= (Ax'+2.cosx'-J£,>x',

Integrating,

(1 + K)E{-yfr, y)= ^-x'+ K si n
x'

-

Ik'-F^
;

and now the arc of the hyperbola

^P=PF+ 2c/c sin x'+ cEx - 2c(H- K)E{x}r, y).

182. If we put ^_^'= i^_^,

then we find (§ 180)

(l + cos0)tanx; secyA/
""^^

1 - cos ,^ tanY ' ^~
1 - cos tanY"

(l + cos^)sinx'cosx'
®™ f- A/ '

. ,, .X l-(l-cos9!>)sinY_ Ay+ cos^
^^' ^ Ax ~(l+cos0)Ax"

and . ^ . = (1+ cos <t>)-^„ "with X= tan^J^.

Now, sin(2x'-f) = Xsin^,

as in Landen's second transformation (§ 123) ; and

(1 +cos.^)A(^. \)di= (AV+cos 4>ydx'/A'x'

= (Ax+2cos^^,+^^)<^x'

= 2Ax'.^x'+2cos^g,-sinVC-H^).

Integrating,

(1 + cos ^)E(^, X) = 2Ex + 2 cos ^iPx'- «i°V sin x' cos xV-^X J

and the arc AP can be expressed by means of Ex and E{^, X).

When X= x'=am ^K, then ^=W

;

also (§ 175) 2Ex = E{k)+ 1 - cos 4>, while 2Px'=K

;

so that (1 + k')E(X) = E{k)+ k'K.
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183. The following theorems, analogous to those of § 177,

can easily be proved by the student :

—

(i.) The difference between the infinite asymptote DT and

the infinite arc FT is equal to AD— SiXcAF; so that

the difierence between the infinite asymptote OT and

the infinite axeAT is equal to OD+AB— 2 &vcAF

;

(ii.) the coordinates of F are (c+&)V{(c— &)/c}, s/Q^^h)y
and the tangent FK=AD= b, KG= c;

(iii.) the tangents at P, Q intersect in R on the confocal

ellipse through i'', whose equation is

c+ b

and the tangents at P', Q intersect in R' on the con-

focal hyperbola through D and K, whose equation is

x^ y^_ _

c— a a '

(iv.) PR- arc PF= QR- arc QF;
(v.) P'E'+iJ'Q-arcP'Q is constant;

(vi.) the circle inscribed in the region bounded by the

straight line AD, the asymptote JDT and the hyper-

bola AQ touches the hyperbola at F

;

(vii.) Pr=c cot xAx, QF=ccotx'Ax', Qi) = cAx'/sin x'cos x'.

PT.QV=FK\ PY.QZ=c\
Qv-PT=QZ, or vZ= PT,

sm X cos X — cos x sin x cos x — cos x
184. The geometrical theorems of § 173 for the ellipse hold

with slight modification for the mechanical description of con-

focal ellipses and hyperbolas from a fixed hyperbola.

The threads from the reel must be led I'ound distant points

on the hyperbola APQ (fig. 24) and be wrapped on the curve

;

and now, starting from F, the confocal ellipse FRD wiU be

described, if the threads are led off in the same direction.

At D, one thread DT must be supposed of infinite length

;

and, beyond D on the ellipse FD, the thread BT must be trans-

ferred to the other branch of the hj'perbola.

By making the threads come off the reel in opposite direc-

tions, the confocal hyperbola DK can be described, starting

from -D or any other point R.
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185. The integration of the functions of § 77 can now be

expressed by means of the elliptic functions, and of the function

E am u, defined by

E am u =ydii?udu.

Then J"K^sn^udu=u—E am u

J'k^cv^ucLu=E am u— kHi.

To integrate a reciprocal function, for instance nd^u, we
notice that

T—5 log dn XI = ic'^nd^iA— dn^it,

so that jK'^nd^udu=E am u— /c^sn u en u/dn u
;

and so on.

Again, since cd^u= sn\K—u),

yK^cd^udu= u —ydn^{K— u)du

=u-E+Ea,m{K-u)
= u —E axau+ K^anucn u/dnu

;

and since K^nd^u= dn\K—u),

/K'-nd^udu=E-E sim{K- u)

=E a,mu— K^sn u en tt/dn u,

as before.

In Problem III., § 86, we find

dt dn20 „

^50=^ = ^^^^'

and nt =/dc^edd = - £" am + sn dn 0/cn 0.

Examples.

1. Prove that the area of the Cassinian

r*- 2aVcos 20+ a*= 6*

IS

or

2f(¥-a*sin^<j>fd<p, if b>a;

2/ (a*-b*siri'^)-^b^cos^^d(p, ii a>b.
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2. Eectify, by means of elliptic arcs (pointing out the

geometrical connexion),

(i.) yjh = sin xja, cos xja, cosh xja, dn xja, en xja, sn xja, ...;

(ii.) r= bcos(b6/a) or acos(a6jb), the pedals of an epi- or

hypo-cycloid

;

(iii.) rcos{h6/a)= h, or r cosh(60/a)= 6, Cotes's spirals;

(iv.) the lima§on r= a+ hcos6, the trochoid, and the epi-

and hypo-trochoids.

3. Express a; as a function of s in the Elastica of § 97.

Prove that if the ordinate is made equal to p, the perpendic-

ular on the tangent from the centre of an ellipse or hyperbola,

and if the abscissa is made equal to the arc ^P±PF, the

curve will be an Elastica (Maclaurin, Fluxions, 1742.)

4. Prove that (1— k^)^-^H ? A=0;
^ cLk^ k cIk

d^E 1-K^ dE
(^-'^)^+^^ -d.+^=^-

Change the independent variable in these differential equa-

tions from K to h, 6, or u, where

ic=^h= sin = tanh u

;

and reduce the resulting equations to the canonical form

1 d 7J

y dx^

Solve the differential equations in which

1 — hh'/=
, cosec220, — cosech22tt, — sech^Sw, ....

(Glaisher, Q. J. M., XX., p. 313 ; Kleiber, Messenger, XVIII.,

p. 167.)

5. Prove that, if tti-|-tt2+% +'"'4= 0,

_ J— K^SjSgSgS^ /CjCij CjOg Cgttg c^\
l-hK^SgSgS^ \ % Sg S3 S^ /

^ K^CiCgCgC^ /s^d^ s^d^ s^d^ s^dA

K?C-fi^C^C^-K'A Ci Cg C3 c^ /

K%d^dgd^ / s^c^ s^c^ S3C3 s^cA

k'^+ d-^d^d^d^\ d^ d^ d^ d^J

= ^^(81^+ 83^+ S^+ S/- 28182838^ -f- 2c^G^c^c^- 2).
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, , „, , — "JK ail Ui uu 'w uu '«/ ail v uu v uu y ,, ,

dn>+t;)-dn2(u-v) = n_An2.„.2,A2 -(1)

OF THE SECOND AND THIRD KIND. 191

The Mliptic Integral of the Third Kind.

186. We can now make a fresh start, and prove the Addition

Theorem for the Zeta Function independently)-} and then pro-

ceed to Jacobi's form of the Third Elh'ptic Integral.

(Fundamenta Nova, 49; Glaisher, Proc. L.M.S. XVII. p. 153.)

Multiplying formulas (3) and (6), § 137,

— 4K^sn w en li dn w sn iJ en -y dn t)

(1 — /c^sn^sn^v)^

and, integrating with respect to v,

r, / , \ , rr / . „ 2 cn w, dn «,/sn u

where G is the constant of integration, independent of v.

To determine G, first put v= u; then

^ „ „ , 2 en w- dn w/sn u
1 — K^sn^tt

so that, replacing E am u by EujK+Zu,
„, s rr/ s rrc, 2 cu u dn u/su u 2 cu u dn u/sn w
Z(U+ V)+Z{U— V)—ZZU= = 5—

7

-:; 5—5

—

—2—
^ ^ ^

^ 1 — /c^sn% I— «:^sn%sn^v

sn2u/, 1 — K^n^ii \ , „ sn%— sn^-y
=—9— (1-^i 9

—

9 ^)=/c^sn 2u= 5—

5

rsn% V 1 - K''sn''usn''«/ 1 — K^sn''u sn^i;

= /c^sn(w+ 'j;)sn(u— ^;)sn 2u (2)

Replacing u+v, u— v, and 2u by li, v, and ^^+^;, this

becomes the formula given above, § 176,

Ziu+Zv— Z(u+ v)= K'^sn u sn V STi(u+v) (2)*

Again, put ^= for the determination of C; then

G= 2Eu+2 en u dn u/sn u

;

and now
-2Anucnudnatsii%; „,

Z(u+v)+Z(iJb— v)— 2Zw= = 2—

5

2 w)'
'^

' ^ ^ '^ 1 — K'^sn^it sn^v ^

another form of the Addition Equation of the Zeta Function,

leading immediately to Jacobi's form of the Third Elliptic

Integral, as required in § 114.

187. Integrating this equation (3) again with respect to v, and

employing Jacobi's notation of

An ucnudnu sn^-y dv
TT/ \ t fK^snucn
IL(v,u) fovj

J—

^

^sn^M sn'^i)

where u is called the parameter, and v the argument, then

n(v, u) = vZu- \/Z{u+ v)dv- \/Z{u - v)dv.
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Jacobi now introduces a new function Qu, called the Theta

Function, defined by

>ZttcZu= log-^,
eo'

or 6u= 60 exT^yZudu; (4)

so that Zu=7^^—

.

Qu

Now Jz{u+ v)dv= log^^~^,

fZ{u— v)dv= \og-

and n(t;, u) = vZu+ 1 log
]

1/ oA

•(5),
^-[QggvZul

e(u-v)
'e(u+v)'

leju-v)
'Q{u+vy"

so that the Third Elliptic Integral is expressed by Jacobi's

Theta and Zeta Functions, the arguments being u and v, two

in number only, and not three, n, k, <j), as in Legendre's form.

188. Integrating equation (3) again with respect to u,

I /{dn^(tt+w) — dn^(it — z;)}c?i'C?u= log(l— K^n^sn^w),

or

, <d{u-\-v)
,

, Q{u—v) „i 6'J* 1 /I 2 9 5, s

log
Q^ + log

Q^
- 2 log Q^ = log(l - /c%n% %v?v),

e(H±|g^^.i_^3,^,„^,
(6)

a formula which takes the place of the Addition Theorem for

the Theta Functions.

For instance, putting u= v,

92^= (1 - K2sn%)e%/e30 (7)

Interchanging the argument and 'parameter, u and v, then

n(u,.)=uz.+iiog||^,

so that II(tt, v) — Ii.{v, u)= uZv— vZu, (8)

and JI(v, u) is thus made to depend upon ![(«, v).
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189. In Legendre's notation, Ii{n, k, <p) or simply 11^, is

employed to denote his Elliptic Integral of the Third Kind

d(j>A
n being called Legendre's parameter (§ 114) ; and with Jacobi's

notation, 11(71, k, am u)=/—

/'

Jr.

L+ Tisn^u

But Jacobi changes the notation, by putting n= — K^sn^a,

and by calling a the parameter ; also by denoting the integral

'/c^sn a en a dn a sn^du , „, ,

-^j 5—5 5 by n(w, a),1— /c^sn^asn^ •'

and not the integral

/ du , . , , , sn a II(u, a)
fz. s—

5

n~, which equals uA ^

1 — K^'sn^'a sn^w ^ en a an a

In Legendre's notation, the Addition Equation of the elliptic

integrals of the first kind

leads to Ecj)+ E^lr— E/x = /t%in ^ sin i/r sin yu,

the Addition Theorem for the second elliptic integrals

;

and now for Legendre's elliptic integrals of the third kind,

the Addition Theorem is (Legendre, F. E. I., Chap. XVI.)

1 _, riv'a sin d) sini/r sin ^

V« l + TO— ncos cos Y^coSjic

= ,/ ,tanh-i
y(-«>in0sinV-sin;x

^( — a) 1+TO— -ri cos cosi/r cos/x

according as a is positive or negative, where

a = (l+«)(l+K»;
this can be verified by differentiation.

This relation is very much simplified by the use of Jacobi's

function n(w, a) ; and now with

= amtt, i/r = amv, fi = ?im{u+v),

it becomes IL{'W, a)+ n(v, a) — 'n.(u+ v,a)= ^ log Q,

, „ Q{u-a)Q(v— a)6(u+v+a)
where ^' = 7^—;

—

nST—;

—

\^/—

;

^\ V-^JQ{u+ a)Q{v+ a)Q{u+v — a) ^ '

and fi is capable of being expressed in a great variety of ways

by means of the elliptic functions en, sn, dn of combinations

of 11, V, a.

G.B.F. N
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J,
. j6(u- a)e{v - a)\ ^ _ Oju- v)e(u+v-2a)
1 ^ 00 J ~l — Khn\u— a)sn{v— a)'

je{u+ a)Q(v+ a)y _ Gju- v)e{u+ v+ 2a)_

I 90 J "l-zc^s- K^sn^u+ a)sn\v+ a)

feae(u+v-a)y_ e(:u+v)e(u+v-2a)

1 00 J
~

1 — Khn^a sn^{u+v— a)'

(eae(u+v+a)Y_ e(u+ v)e(u+ v+ 2a)

I 00 J ~l-K^sn^asn\u+v+ a)'

(§ 188), so that {Fundamenta Nova, § 54)

P^g_ 1 — K^sn\u+ a)sTa.^(v+ a) 1 — An^g sn\u+v— a) ,j.

l — K^an^(u— a}sn\v— a) l—Aji^asn^u+v+ a)""

One of the simplest expressions, equivalent to that given

above in (9) in Legendre's notation, is

„_1— /c^snusn'ysnasn('i(,+'y— a) .^„.

1+Anwsni;sn asn(u+ v+ a)'

and a systematic collection of different forms of Q is given by

Glaisher (Messenger of Mathematics, X.).

190. According as Legendre's a or (l+ n)(l+K^/n) is positive

or negative, so his Integral of the Third Kind I[(n, k, <p) falls

into one of two classes, the first called circular, the second

logarithmic, or hyperbolic, as we shall call it.

In the corresponding classification of Jacobi's form, the para-

meter a is imaginary or real; and it is remarkable that in

dynamical problems, it is the circular form, with imaginary

Jacobian parameter a, which is of almost invariable occurrence.

When Legendre's

a or (1+ to)(1+/cVto)

is positive, and the corresponding Elliptic Integral of the Third

Kind is circular, then Jacobi's parameter is imaginary; and

(i.) with n positive, we must put n= — K^sn^ia;

(ii.) —K^>%> — 1, we must, according to § 56, put

n= —K^s,v?{K-\-i'b),

as in § 114 ; and now the integral is expressed by

^(^^, ia) or !!(%, K+ib),

involving Theta and Zeta functions of the imaginary arguments

ia or K+ib ; for which there is no theorem, short of expansion,

to express the result in a real form.

We shall find however, in the applications, that this imagi-

nary form constitutes no real practical drawback.
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Taking for example the result of § 114, then, by (6) § 188,

-AG jx/{e(u+(x)e(u-«)}Q^^,

with u= nt, and a =K+ t'iK' ; while

,=q{i

V, -s
/cnadno.

, „ \ /9(u— «)
expi{d>— /j.t)= eKp[ u+ uZ^ajJ-——;

—

'r :

so that, by multiplication,

{x+ iy)(cos fd— i sin fd), or p exp i{(j)— fd)

fA-D.D-C\Q(u-a)QO /cnadna
,
„ \ ,,„,

="V(^ AG J 0u9a ^V sna

which, when resolved into its real and imaginary part, gives

the vector of the herpolhode, or its coordinates with respect to

axes resolving with constant angular velocity ^.

191. Take Jacobi's II(u, a), and split up the quantity under

the sign of integration into a quotient and partial fractions

;

therefore

Icnadnaf F du f du \
2 sna ly 1 — Ksnasnu Vl+ Ksa«snuJ

= ttcnadna/sna+ n(tt, a);

while

1 cncidn a\ r du r du \

\.y 1— Ksnasnu Vl+Acsnasnw/2 sna
'k en a dn a sn tt

t/" du
1 — K^sn^a ST?u

=y{^K sn(a+'W') — If sn(a — u)}du

_1, dn(a+ u)— Kcn{a+ u) dn a+ gcna ,^„,
~2 ^ dn(a— u)+ Kcn{a— u)' dna— Kcna^

Therefore, by addition and subtraction,

cnadnar du _ („ en a dn a\

sna ^1—Ksnasnu \ sna /

1, 0(a— u) dn(a— it) — ken(a— u) dng+zccna

2 ^G(a+ w)'dn(a+'u,)+ A:cn(a+u.)'dna— Kcna'

en a dn a

sna yi+ATsnasnu \ sna /

,
1, Q{a— u) dn(ffl— ^)+ <ccn(a— ^) dug — fccna

2 °6(a+ 'ii)'dn(a+ u)— /ccn(a+ ii)"dna+ K:cna"
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192. Again, taking the formula. (7), § 137,

:; 2—5 o- = sn(a+ u)sn(a- -u),

and differentiating logarithmically with respect to a,

sua en a dn a An ct en a dn a sn%
sn^a— sii^u 1 — K^n^a sn%

_1 cn{a+ u)dn(a+u) 1 cn{a— u)dn(a— u) ^
~2 sn(a+ u) 2 an(a— u) '

and then integrating with respect to u,/ sn a en a dn adu 1, sn(a+u) „, ^
5 5 = H log—) X

— n('M., a)
sn%-sn% 2 °sn(a-u) ^ ' '

„ ,1, snfa+ tt) 0(a+ u)
= - uZa+ 7; log ) 't -57 :

2 * sn(a.— u) 9(a — ti)

„ ,1, H(a+w) .,,,= -uZa+ 2log;yA__J, (14)

introducing Jacobi's function Htt, called the Eta Function,

defined by the equation (Fundamenta Nova, § 61),

snu= -7- ^- (15)

This form (14) and Jacobi's n(tt, a) are the two forms of the

hyperbolic integral of the third kind to which Legendre's form

can be reduced for negative values of a.

When > n > — K^, we put n= —An%,
and obtain Jacobi's form Ii{u, a) of (5).

When — l>7i> — 00, we put n= — 1/sn^a,

and obtain the above form (14).

This form again can be split up into partial fractions ; and

a similar procedure shows that, since

y s

'du , snu , dn u— enu
snu ° dnu+ cnu' ^ snu

therefore, by equations (4) and (7), § 137,

~cnadnasnudur
r du r

J sn(a— u) 1/ SI

snfa+ tt) — sn(a— u) ,——. —7^-—r-^au
sn(a+ M,)sn(a— u/)

du
(a— u) 'i/ si\{a+ u)
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_ , sn(a+ tt) dt\(a~u)+ cn(a— u) dna— cna
~- °sn{a— u) dn{a+u) — cn{a+ u) daa+ cna'

_ J
, sn(a— u) dn(a-\-u)+ cn(a+ u) dn a— en a . ,

- ^sn(a+ u) dn(a— w) — cn(a— u) dna+ cnct"^ ^

Therefore, by addition and subtraction of (14) and (16),

'cnadnadu
sn a— sn tt

6

w . ,1 Q(a+y) dTi{a+ u)+ CTi(a+ u) dna— cna= — wZa+ilog^T f J—. ( 7
( J ;

," °6(a— It) dn(a — w) — cn(a — u) dna+cna
"cnadnaduAsna+sntt

6

— 7 j-il
9(0^+"**) dn(«+tt)— cn(a+w) dna+cna~

* ^0(a— u) dn((Z— u)+ cn(a— tt) dna— cna*

By means of equation (6), § 188, and the formulas of § 123,

these relations may be written

'cnc6dnac?w/ sn a— sn th

02A(«+ w) sniacni(a+ u)dn A(a+ M)

° 02J((X— u) sn J(a— u)cn ^a an ^a

/cnadnadu
sna+ sntt

Q''-\(a-\-Vb) sn |(a+ ^6)cn ^gdn \a
= -uLa+ ioge2|^„_^t) sniacnKa-tt)dn^(a-w,)"

The student may prove, by a similar procedure, that

r snodnodu^, l^^(a+u)_
J en u— cna ' ^1 — cn(a— w)

'

snadnacZw ,1 1 + cn(a— ?a)
,
^, ^

; = \ log Tl )—I—(+ II(w, a),
cnw+cna ^ '=l + cn(a+ tt)

'

Khnacnadu ,, 1— dn(a+ tt) _., .

T T
= i log -^—J—7 ( — HOii, a),

dnu— dna ^ ^1— dn(a-tt) ^ ^

K^sn a en a cZu , , 1 + dn(a—u),^. .

T r-3 = - log Til)—,—(+ n(ii, a),
dnw+ dna - '=l+ dn(a+ 'u) ^ -"

/
/

/

snaenadna— snucnitdnu , _, sn(a+ u)Q{a+ u)QO _^^^

sn^a— sn^M. 6a0i6 '

snttdnu— snadna , _ 7 _i ^
6(a+ u)0O 1— cn(a+ -u.)

en u— en a ~ ^ QaQu 1 — cna
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Euler's Pendulum.

193. CoLsider for instance the rolling oscillations on a

horizontal plane of a body with a cylindrical base, such as a

rocking stone, or a cradle.

Then the Principle of Energy, considering the line of contact

as the instantaneous axis of rotation, leads to the equation

i(c2- 2ch cos d+h^+W){d6ldtf= gh{veTs a- vers 0),

where 6 denotes the inclination to the vertical of the plane

through the axis and the centre of gravity at any time t, a the

extreme value of 6, c the radius of the cylindrical surface, h the

distance of the C. G. from the axis of the cylinder, and k the

radius of gyration about the parallel axis through the C. G.

When c= 0, this equation reduces to ordinary pendulum

oscillations, as in (3) § 3 ; but in the general case we have the

oscillations of what is sometimes called Euler's Pendulum.

^, df_ {(c~hy+ ¥}cos^e+ {{c+hy+ k^}ain^d

. dd'' 'ighism^a-sm^e)

_ (c-h)^+k^+{{c+hf+ k^}ta.ii^^e
,

^ghcos^a{te^n^a-ta.n^e) '

and nowj if we put
tan^0= tanJa cos ^,

df^ _e- IchcoB a+ h^+ h^-{{c+hf+ ¥}sin^a sin^0

c/.^2

-
gh{l- sin^^ct sin^)^

dt _ lf
c^-2chcofia+ h^+ k^\ A^

d(^ \\ eh J 1— sin^^asin^^'

on putting 7)?=g/c, and

(c+hf+ k^ . 2 ,,_ (c-hf+ k^

" -c2-2c/icosa+A2+ /c2^'''^"''' - c^-2chcosa+ h^+ k^'^°^
'^"

To reduce this to Jacobi's canonical form, put = amM,
and sin^Ja= K^sn^ct ; then dn^a= cos^ia,

, „ c^— 2ch cos a+ h^+ k^ , 4c7i.cos^ia
and sn-'a= -.

—
. ,.o

, ,0 : (^^a= ,
, ,,„

,
,., ;

,, , dt ^snrtdna dn^u
so thatw^j— = 2-

du en a. 1 — K^a^a sn^u

_ sn a dn a 2/c^sn a en a dn a sn%
~ en a l—K^sn^asn^u '

, , „sn a dn a „„ , ,

and nt= 2 u—2iUu, a)
en a

while tan|0= tania en u.
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In the ordinary pendulum, where c= 0, this reduces, as

in § 8, to

tan^0= tan^a cn(K—nt),
equivalent to

sin^O= sin^a sn nt

;

where n now denotes s/{9^IQ^^+^^)}-

As another application of the Third Elliptic Integral the

student may rectify the inverse (or pedal) of an ellipse or

hyperbola, with respect to any point; examining the parti-

cular case when the point is the centre ; also the case of the

Lemniscate, the inverse or pedal of a rectangular hyperbola,

with respect to the centre (R. A. Eoberts, Integral Calculus,

p. 310).

Examples.

1. Prove that, if Ji;+7<;'= 1,

rh^ rhr (Ic cos^+ k'cos^\[r)d(j)d\l/- _
J J J{l-ksm^4>)J{l-k'sin'ylr)-^'^'

and deduce Legendres relation of § 171.

2 f^'Y^
Ky-x)dxdy ^2^

„ rV<c /-T. y— x dxdy _ -w

J J{\ + Kx){\ + Ky) J{\-x\ l-/cV)V(2/'-l

.

l-Khf) ~ ^''

1 -1 (§66).

4 f/^ (y-x)dxdy ^
J Js/(4^.x-ei.x-e^.x-e^)J[-4<.y-e^.y-e.2.y-e^)
"^ «3

(§ 51).

r<^+Bra (y-x)dxdy

y Jj{ia-x).(x-mf+ n^}J{iy-a).{y-mf+ n'} ~
^'^

a a-B
(§ 47)_

6. rr (^7)(y-«)(^-«yV-f)f^3/^2. (§ 153).J J {x-a){y-a)J{-XY)

7. Denoting K-E, K'-E, E-k'^K, E'-kW by J, J', G, 0'

respectively (Glaisher, Q. J. M., XX.), prove that

^^^,AK''f.KmME'f-M)^
\ aK dK ' k\ dK dK /

= . (j'^^-E^)J-(of^-G'^
\ dK dK / K \ dK dK.



CHAPTER VII.

ELLIPTIC INTEGRALS IN GENERAL, AND THEIR
APPLICATIONS.

194. The general algebraical function, the integral of which

leads to elliptic integrals, is of the form

8+TJX
U+ VJX'

where 8, T, U, V are rational integral algebraical functions of

X, and X is of the third or fourth degree in x.

We first rationalize the denominator, so that

S+T^X _{S+TJX)(U-VJX)_M ,
N 1

J7+ VJX
" m-V^X ~D^'D JX'

suppose ; and now the integration of the rational part MjD is

effected by elementary methods, when it is resolved into its

quotient and partial fractions.

In the irrational part NjDJX, the rational fraction NjD
is also resolved, into a quotient, having a typical term a;'",

and into partial fractions, having typical terms

lj{x-a) or l/(x-a)".

By differentiation, we find that

^{x'^-^JX) = {{m-\)ax'^+4^{m~^)hx'^-'^+Q{m^T)cocF'-^

+ 4(m-|-)<ia;'"-=^+ (m-3)ea;'"-*}/^Z
;

so that, integrating, and denoting_^™cZa;/^X by Um,

^m-3^X= (m-l)au„+4(m-f)&tt™_i+ 6(m— 2)cUto_2

+ i{m— ^)dum-i+ {m,-2)eum-i,

a formula of reduction by means "Df which the integral u-m is

made to depend ultimately on the integrals u^ Uj, and u^.

200
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Similarly, by differentiation and integration, denoting

/dx/{x-a)^JX by v„,

we can determine another formula of reduction, of the form

/X
(.X— a;

by means of which the integral y„ is made to depend ultimately

on the integrals w^, Vg, v^-^, and v_^; or rather, on v-,^, Ug, u^, u^
;

since v^ and u^ are the same, and

By the various substitutions of Chapter II., u,, is reduced to

Legendre's First Elliptic Integral, while at the same time the

integrals Uj, U2, and -u^ are reduced to elliptic integrals of the

Second and Third Kind.

When x— a is a factor of X, the substitution x— a= 'i-jy

shows that w^ hecomesyydy/^Y, where Fis a cubic function

of y, and v^ now reduces to the Second Elliptic Integral.

But without carrying out this work in detail, now only of

antiquarian interest, we adopt instead the Weierstrassian

notation : and by means of the substitutions of the previous

chapter we express x and ^X rationally in terms of ^v, and

^'u; so that the integration is reduced ultimately to that of

A+Bf'u with respect to n, A and B being rational functions

of fU.

195. We must at this stage introduce the functions

^u and au,

the functions employed by Weierstrass, in conjunction with

his function fu.

The function fw, called the zeta function, is defined by

f'u= — jau, or fu = —ffwd/w ;

while the function crit, called the sigma function, is defined by

or log cru =J'^udu, cru = expy^itc^u-

;

and thus —-^—= — pw.
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Taking the definition of s or pu in § 50,

expand in descending powers of s, and integrate ; then

S

- ® +* +40 ® +56 +•'

the * marking the place of a missing term in the expansion.

Therefore, by Reversion of Series, since u^ is a rational

function of s, we obtain, in the neighbourhood of u= 0,

so^9u-^2+*+
20 + 28

+•••

To obtain further terms of the expansion, assume

and since f"^u,= ^f^u— g^fu.— g^,

f"u= Qf^u-^g^,

f"'u = \2<puf'u,

we can obtain from the last equation a recurring formula for

the determination of the coeiEcients c ; and as far as u^,

«y>,-l.A. I

9'2^'
I

9i^'
I

^2^^'
I

3gr^ff3u8

'^'"'-u'^ *'^ 20 ^ 28 ^2*.3.52+ 2*.5.7.1l"^"""

The expansion of the zeta function is now

so that, defined

Similarly we
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Homogeneity.

196. From con.siderations of homogeneity it follows, that if

•u, is changed into w/m, and at the same time if
g,^. ^^^ 9s ^'^^

changed into m^g.2 and m^gfg, then s or jaw is changed into m.^s

or m^pu ; so that

F («
; 92, 9s) =^F

(
J ; ™V2> m'S's) ;

f'i'^l 9%, 9s) = :^iP\~; ™V2. '"'>'%

and similarly

f (w-
; 92, 9s)

=

™ fG ; «^V2. ^'s-s\m '

^(U > 92' 9s)= "'< O-
(,^ ; ™V2. ™V3

At the same time the discriminant A becomes changed to

m^^A, but the absolute invariant / is left unchanged (§ 53)

;

we may in this manner alter the argument v, proportionally

;

for instance by taking m= ^(e-^ — Cg) we can make the argument

the same as in the corresponding elliptic functions (§ 51).

When m is chosen so that m^^A = l, or m = A"",the elliptic

integral is said to be norm,alised (Klein).

Suppose, for instance, that g^= 0,

and m, m? are the imaginary cube roots of unity, — I - ^is/^ ',

then m^= l, and u/m = m^u;
so that p(m%; 0, g^)=m,^p(u; 0, g^),

p(m u; 0, (/g) =m f(u ; 0, g^),

while p'u= p'm^u= ja'm^w.

Again f ('" ; 0, 0,) =— f— =—;f—s,

o-(u ; 0, o,) = ma- — =mV -^.

This is the simplest illustration of the theory of Complex

Multiplication of Elliptic Functions, of which we shall make

use hereafter ; the general theory is required in the integration

of the equation

Mdy _ dx

J{'^y''-92y-9s)~ J'^^^^-92^-93)
for particular numerical values of gfg and g^, when \jM is a

complex number of the form a+ iby/n ; in this instance g2= 0,

and M is an imaginary cubic root of unity.
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197. With the aid of these three functions of Weierstrass,

fu, ^u, and o-w, it is possible to express any elliptic integral,

and we can thus complete the problem left unfinished in § 194.

The function ^u is analogous to Jacobi's Zeta function ; and
with s = jstt, it may be defined by the relation

^'^jh^^(4s^ - g^s- gs)
- *s ds

Thus, for instance, from § 153, with appropriate limits,

p., __ /\ a— /3. a — y.a — S[x— ^ x— y X— S\ dx

where u= /'^.

To obtain the Addition Equation of the zeta function

analogous to (2) and (3) of § 186, take the formula (F) of § 144,

implying also the formula, obtained by changing the sign of v,

so that, by subtraction,

,(u-.)-K.+.)= ^^;^ («)

Integrating (a) with respect to v,

fW-fV
where C, the arbitrary constant of integration, may be obtained

by putting v= Q, when j3v= oo ; so that G— —2^w, and

An interchange of u and v gives

l(u-v)H{u^v)-nu= ^£^, (/3)

-^(w-^)+^(u+^)-2f^= —^^; (/3')

SO that, by addition,

^(^+^)_ ^^ _ ^^= f}t^ll (y)

= s/{'P'^-\-'S>'>^+ ^{'^+ v)}

the Addition Equation, analogous to (2*) § 186.
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With u+v+w = 0,

this may be written, analogous to § 176,

198. We can now take the function A+Bf'u of § 194, and
suppose that A and B are resolved into their quotient and
partial fractions.

Writing p, p', p", ... for ^ti, and its successive derivatives,

then the relations

p"'=\2pp\ etc.,

enable us to express the quotient or integral part of A+Bp'u
in the form

C=Cq+ c.^PU+ c^f'u+ c^f"u+ . . .

.

Considering next a partial fraction of A +Bp'u of the form

fu— a

we replace a by fv, and write the partial fraction in the form

fU— fV fU— fV

= 'LH{i(,u-Vv)-iu-lv)^'LK{^{u-v)-lu^lv).

All such partial fractions can thus be expressed by a series

of terms,

where the sum of the coefficients I is zero for each partial

fraction, and therefore for the whole series ; so that

Again, by repeated diiferentiation of equations (^) and {/3')

(§ 197), with respect to u or v, we obtain equations, such as

(^.;)^= «'(^+ ^)-^(^+^)'

by means of which partial fractions of the form

^+Qf^
or generally ^+ ^^'^

,(pu—pvy ^ ^ (pu—pv)"''

can be expressed by terms of the form p(u+ v), p(u— v), and

by their derivatives ; as well as by terms of the form L and C.
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Thus, finally, A-j-Bp'u,, or any rational function of pu and

f'u, can always be expressed as the sum Z +P of two series of

terms, L= l^^{io- v^)+ l^^(u- v^)+ l^^{u -v^)+...,

where 1^+ 1^+ 1^+... =0,

and P= c+ 2mf>(''>(u— ii);

and now the integral can immediately be written down, in-

volving, in general, the sigma, zeta, and p function, as well as

its derivatives.

When the sigma and zeta functions are absent, the integral

is a function of pu and p'u, and is not properly elliptic, but

only algebraical.

This method of integration is taken from Halphen's Fonc-

tions EUiptiques, L, chap. vii.

Halphen points out that to obtain the coefficients in the

series of terms

l^(u— v)+m#(u— v)+ m,^f'(u— v)-\- 'in^p"{u— v)+...,

corresponding to the same v, it is only necessary to take the

coefficients of {u— v)'^, {u— vY'^,{u — v)'^, ... in the expansion

of A+Bp'u in ascending powers of u— v; the coefficient I

being Cauchy's residue.

f-J 9'

199. Integrating (/3) with respect to v, then

^ = log -4 ( — 2vCu, (A

)

which may be considered a canonical form of the Third Elliptic

Integral, in Weierstrass's notation.

Thus, for instance, in § 113,

J pit— fv

1 1 ar(u+ v) .

°a-(u— v)
*

V a-nt— v)
or e'^ =6-"-^%/^

—

-—
{.

V a-{it— v)

By integration of (y), with respect to u and v,

-" —dIw= ]og"- '— uiv^Xov-^——^e-"*", ....(y,)
2 fu— pv ° aUa-v " ° a-ucrv

'

- 5 »

—

dv =log-^^

—

—' — vbt,=\ov^—!—^fi-^'f'';. ...(y„)
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either of which may be taken as a canonical form of the Third

Elliptic Integral ; and also as illustrating the interchange of

amplitude u and parameter v, as in the Jacobian Elliptic

Integral of the Third Kind, n(u, v), in § 188.

Or otherwise, interchanging w and t; in (^j), or integrating (/3'),

=log-7—,

—

{+2utv, (80)

so that, by addition of (/S^) and (/Sj),

Yudv+ p'vdu = 2ucv— 2vcu, (S)
fU— fV * ^ '

a form of the theorem of the interchange of amplitude and

parameter, analogous to (8), § 188.

200. Integrating (/3) with respect to u,

, aiv— U) , cr(v+ u) ,

log
^^

+ log—^:^- 2 log (tU= log(^M,- fv),

(t(v+ u)(t(v— u)
or r,

—

5

= ^u-pv,

(t(u+ v)ct(u— v)

a^U.^-U
=^"-^^'

=^.log cm-^-,log <.?;.. .(K);

the fundamental formula is the use of Weierstrass's elliptic

function, analogous to equation (6) of § 188.

As an application consider the herpolhode of 113 ; then

nh ,, , nh la-(u+v)(T(u— v)

while e^^^./^^^e-f-
yiT{u— v)

so that, in the curve described by H,

while in the herpolhode described by P we must multiply this

function by e'^' or cos fd+ i sin fti.

Putting u= v\n (K), we obtain

(7*u (t{u— v)

This may be obtained by integration of the formula of § 149,

1 ci^
<p2u= ^u--^^\ogfu.
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If 11, V, w, a> denote any four arguments,

cr(tt— v)ar{u+ v )(t{w— x)a-(w+ x)

+ cr(v— w)(T(v+ w)a-(u—x)(T(u+ x)

+ a-{w— u)(T{w+u)(T(v— x)a-(v+x) = 0, (L)

since it is of the form

(U-V)(w-x)+{r-w)(U-x)+{W-u)(v-x),
where ' U—V= —cr^uar'^v(pu— pv), etc.

201. We notice that the Third Elliptic Integral can be

expressed very simply as the logarithm of a function, so that

we may write (y^) in the form

'1 p'w— p'v

/i -du= log (j>(w, v),
2 fu-

where (h(u, v)= ^
'^

e-"^",^^ ' o-tt a-v

and (p{u, v) is called by Hermite a doubly periodic function of

the second kind.

Changing the sign of u, or v,

^(u, -v)= ^(-u, ^.)= -?l^e*;
trii (TV

so that ^(u, v)(f)(u, —v)-=fu— fv.

202. Suppose fv= e^, e^, or e^; then, according to § 54, we
can take v = o}-^, w^+ w^, or Wg, to correspond; and now

f'v= 0, and log ^(m, v) = ^ log {fu— pv)

;

so that

^{u, (joi) = ^(u, - ft)^) == ^{pu - eJ, etc.

;

and (p{u, v) is an elliptic function for these values of v.

We may thus put

J{pu- e ) = -^——l^e - "i^"!, or J-,

where (r-^u, denotes —^^ ^e-"f"i.

Similarly,

itu all

where a,u = ^^"^p^l±^e-k-.^-^, ^^'^C^+ ^sjg-.fo,,

Also ja'w= - 2^(pu - e^
. pw, - e^ . ^tt - eg) = - 2a{ii a-^u a-^u/a^ u,

and (§ 200) o-2w= 2(7% a-jU o-gW o-gU.
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Denoting by a, /3, y the three numbers 1, 2, 3, taken in any

order, then the relation

gives, by a combination of the expansions of au and pu in § 195,

a-aU= l — ^eaU^— T8 (6ea^— c/j)'"'*— • • •

so that (Tatt is an even function of u, and unaffected by Homo-
geneity (§ 196).

Thus, for instance, from ex. 9, p. 174,

o-o2u

+

a-p2u= { J{f2u- ea)+ J{f2u- e^)]a2u

= _9 Vr".— ea)(g3U— 6/3)
0-2u= (ra^tt(7;3'u.

fU
The symbol ria is employed to denote ^wa, so that t) is

the analogue of Legendre's ^ of § 77.

With positive discriminant A (§ 53), we find (exs. 4, 5, p. 199),

and with negative A (§ 62),

formulas analogous to Legendre's relation of § 171.

203. Denoting fu, fv, ^w by x, y, z, then (§ 165) if

u+v+w= Q,

{x+y+ z){4>xyz-g^) = {yz+ zx+ xy-\-\g^^ (I.)

Denoting also {x— ea){y— ea){z— ea) by Sc^, then since

s„2

=

xyz- \g^- {yz+zx+xy+ \g^)ea+{x+y+ z)e^'

_ yz+zx+xy~2(x+ y+z)ea

2Jix+y+z)
by means of (I) ; and this is of the form A +Sea, so that

(gg- 63)81+ (63- ejsg+ (ej- 62)83= ;

or (gg- eg)(!-iU(riVa-{W+{e^- e^a^U(T,pa^w+{e^- e2)a-^uar^va-^w= 0,

CTaU (TaV CTaW
Since Sa= .

au av (tw

(W. Burnside, Messenger of Mathematics, Oct. 1891.)

As an exercise the student may prove that, with

u+v+w+x= 0,

(gg— eg)criU cr-^v o-^w a-^x+ (e^— 61)0-2% cr^v cr^ cr^x

+ (gj— 62)o-3'i*o-g'yo-3it;a-3a;+ (Sj— 63)(63— ei)(ei - 62)0-% crv crw (tx= Q,

the analogue, in Weierstrass's notation, to Cayley's theorem,

given in ex. 1, ii., p. 140.



210 ELLIPTIC INTEGRALS IN GENERAL,

204. The solution of Lamp's differential equation, which may-

be written in Weierstrass's notation

^^J2=<«+ 1)8='^+^' ^^^

is given, when n=l,hj the function <p(u, v) of § 201.

For, differentiating logarithmically with respect to u,

1 dd) 1 ip'u— p'v c, , V s:
•?

<p du 2 fu-^v ^^ '

J
>> ^

'

and differentiating again,

so that

1 d'^d) 1 fp'u— p'vY / , ^ ,

<p dv? 4 \<pu-fvJ '^ ^ °

Lame's differential equation, with tc= 1, and h= fv.

The general solution of

1 dHj_

y
is therefore

y = C(j>(u, v)+ G'(p(u, —v), or C<p{u, v)+ C'<p( — u, v).

When h or fv — e-^, e^, or 63, the solution is one of Lamp's

functions, as in § 202.

One solution is now ^{fu— ea), where a = l, 2, or 3;

the other being

{ i,{u+ 0)a) - eaU}J{fU- ea),

as may be verified by differentiation, or determined indepen-

dently from a knowledge of the particular solution ,J{fu— ea).

205. The revolving chain, resumed.

We are now able to complete the solution (§ 80) of the

tortuous revolving chain, by obtaining an analytical expression

for its projection on a plane perpendicular to the axis of

revolution.

Putting y = '^ cos •»//•, z= r sin 1^,

then we have found in § 80, p. 70, that, when the notation of

Legendre and Jacobi is employed,

#= H_^ HJT^

dx Tr^~ b^sn%Kxja) + c^cn^Kxja)'

S^=2^"+ ^^ (2)
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which, on putting u= Kx/a, and

so that, with k^= (6^- c^)l{d^- c^),

sn^i)= — (#— c^)lc^, cn^t;= d^/c^,

, diyjr en v du v/sn t;

becomes -^ = — :; 5—5-^
,du 1 — K''sn''i( sn i)

, , , . , en i> dn u „

.

.^ -

so that i\Ir=—u II(u, v) (1)'^ snu \ ' ' \ /

Since sn^u is negative, we may, by (67) g 73, put v= t'iK',

where t' is a real proper fraction.

Now r= c^(l — /c%n^u sn^t;)

=«eoV«E±j2§p> (2)

,., .J, /GCtt+v) / cni;dni; „\
while e'^= A / 7=^7 (exp ( Zv Im.

;\6(w— n) V sn'?; /

so that 'i/+ i2= c90-^—^ expl Zv it;. ...(3)

which, when resolved into its real and imaginary part, will

give y and z as functions of u or Kxja, and thus represent the

equation of the chain.

206. The procedure is more rapid with Weierstrass's notation.

Writing y'^+ z" = r'^, we have found that (§ 80)

so that we may put

r^ = k%fu— fv), (1

)

. , T , , , du ^n^wJc
provided that ^-= ^^-^^5—

,

and g^' 9s ^^® suitably chosen.

Since v is the value of u which makes r^ vanish, therefore

,, ,2 du^ ^m

the value of {dr^jdxf when r^= {% 80) ; so that

<p'H=^ -I6H771WF, (2)

and ip'v is therefore a pure imaginary, which we take to be

negative imaginary, so that v= t'w^ (§ 54).

„ d\fr_H^ dx_ 2H 1 ^ W».
du~ Tr"^ du~ n^wl^ ^u— ipv pu — pv
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^^
d^^ zM± = ^^(y+ u)+ l^{v-u)-^v (3)
du pu—pv ^iv ' '' ' 2Si\ / i

from (/3') (§ 197) ; so that

e^^= J^f^e-K (4)

while r= . M^+^)'^(^-^)
, (5)

and 2/+ i2= k ^(^^±:^^e-*

= k(p(u, v),

y-iz= k<j)(u,-v), (6)

giving the form of the chain.

For a revolving chain fixed at two points, we must have r^

restricted to lie between positive values, b^ and c^, and therefore

pu must be restricted to lie between e^ and e^ ; so that with

du/dx constant, we must put u= XQ}Ja+ a)^.

For a chain attracted to the axis with intensity proportional

to the distance, and thus taking up a form of miniTnum

moment of inertia, we have u = xw-Ja ; and now pio can become

infinite, and the chain reach to infinite distance.

In this and other mechanical problems, the parameter of the

elliptic integral of the third kind is almost always imaginary

;

the apparent awkwardness of this imaginary parameter is

removed when we proceed to express the vector y+ iz by a

doubly periodic function of the second kind ^(iv, v), whose

logarithm is the elliptic integral of the third kind ; and thence

determine y and z theoretically by resolving ^(w, v) into its

real and imaginary part.

Familiar instances of the same procedure are met with in

Elementary Mathematics ; thus

x+ iy = c cos(nt-\-ia), or c cos\i{nt+ i^),

will represent elliptic or hyperbolic motion about the centre.

Generally, with CC+ -13/ = 2, X+iY=Z=F'z\ then

will give the motion of a particle of unit mass under component

forces {X, Y). (Lecornu, Gomptes Rendus, t. 101, p. 1244.)
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207. The Tortuous Elastica.

A procedure, similar to that just employed for the revolving

chain, will show that the equation of the curve assumed by
a round wire of uniform flexibility in all directions can be

expressed by the equation

y+ iz= k^(u, v)

and z= k^u-\-yu,

where u= swjc+ a)3,

s denoting the length of an arc of the wire, and 2c the length

of a complete wave.

(Proc. London Math. Society, XVIII., p. 277.)

The elastic wire difiers thus from the revolving chain in

having u= S(cJc+ (iUg, instead of u= xo)Ja+ u}^ (§ 97).

To establish these equations, take the axis Ox as the axis of

the applied wrench, consisting of a force X along Ox and

-a couple X in a plane perpendicular to Ox ; denote the tor-

sional couple about the tangent at any point by G, and the

flexural rigidity of the wire by B.

Then the component couples of resilience about the axes

Ox, Oy, Oz are taken to be

B{y'z"-y"z'), B{z'x" -z"x'), B{x'y"-x"y')

the accents denoting differentiation with respect to the arc s

;

the equations of equilibrium are therefore

B(y'z"-y"z')=Gx'+L (1)

B{zx"-z"x) =Gy'+Xz (2)

B{x'y"-x"y') = Gz-Xy (3)

(Binet and Wantzel, Comptes Bendus, 1844).

Differentiating each equation with respect to s, multiplying

respectively by x', y', z, and adding, gives

G'= ; so that G is constant.

Multiplv equations (1), (2), (3) by x', y', z, and add ; then

G-X{yz-y'z) = ^,

so that yz'— y'z= rH-\Jrlds=GIX, a constant

;

and yzf'— y"z=().

Again, multiplying (2) by y, (3) by ;:;, and adding, gives

Bx"{yz' -y'z)- Bx'iyz!' - y"z) = G{yy'+ zz'),

or Bx"= X{yy'+zz'),

.so that, integrating, Bx'= hX(y^+ z^) + H.
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Then BV^==X\yy'+zzj
= X'{(y^+z^)(y''+ z'^)- (yz'- y'zf}

= 2X(Bx'-H)(l- x^)- G\

a cubic function o£ x' ; so that, by inversion of the elliptic

integral, x' or y^+ z'^ is an elliptic function of the arc s, which

may be written

y^+z^-=h\fM-<pu), (4)

or Bx' = ^Xk^{fw — fu)+ H,

provided
Ts=^^''

a; . , / 2H\
h
= fu+ (^a)+ jpjw-; (5)

, djyp-_ JG ds _ 2iBG 1 _ ^p'w ,^.

du ~ Xr^ du~ XVc^ poo-pu~ ^w- pu

By Kirchhoffs Kinetic Analogue, it follows that the axis of

a Spherical Pendulum, Gyrostat, or Top can be made to follow

in direction the tangent of a certain Tortuous Elastica, when

the point of contact of the tangent on the elastica moves with

constant velocity ; so that, if x, y, z are the coordinates of a

point fixed in the axis of the Gyrostat, and Ox is vertical,

T
d a-(u+ w) ,. , ,

y+ iz= lc-^ i i exp(X — Cci) m,

X= k{fv— pu),

where now u= nt+(ij^,

and 2a}Jn is the period of the oscillations of the Top, or Spheri-

cal Pendulum.

The Spherical Pendulwm and the Top.

208. To prove these formulas independently for the spheri-

cal pendulum, let the weight of the bob be W lb., and let the

tension of the thread be a force of NIW poundals; then the

equations of motion are, with the axis of x drawn vertically

downwards,

S+^-=^' g+% = 0, S+i^^=0; (1)

subject to the condition, I denoting the length of the thread,

x^+y^+ z'^ = P.
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The equation of energy is

^{x^+ y^+ •2)=^(a,+ c); (2)

while yz— yz= h, Si constant (3)

Now, xx+yy+zz+jN'P= gx,

so that Nl^ =gx+ x^+ y^+ z^ = g{3x+ 2c)

;

thus giving the tension of the thread.

Hermite writes (Sur quelques applications des fonctions

elliptiques, 1885)

{y+ iz)(y - iz)= yy+zz- i(yi- yz)

= —xx—ih,

so that the norm of each side is

Then

(f2- x^) { 2g{x+ c)- i;2} = x^x^+ h?,

or Pa?— 2g(x+ c){P— x'^)— h^

= — 'Iga?— 2gcx^+ 2gl^x+ 2gcl^— h^;

so that X is a simple elliptic function of t, which we may write

X= Jc(pv— fu), (4)

where u=nt+ ui^, for pu to lie between e^ and eg.

Then IVc^n^p'^u= 25fF(j3W— jav)^— 2gck\pu— pv)^

- 2gkP(pu- pv)+ 2gcl^-¥
= igJ<?(4>p^u- g^pu- g^,

provided n"^= igkjP, and pv= — ^cjh
;

while g'j 3.nd 5^3 are suitably chosen.

The value of p'v is found by noticing that a;= when u= v;

and thus lVc^n^p'H— 2gcP— h^,

Now Hermite writes

^^(y+iz)+N(y+iz) = 0.

1 d\
,

. , .rdf" 2NP' „3a;+2c „ , „

Lamp's differential equation for n= 2, with h= %fv.

The formal solution of this equation is reserved for the

present; but it can be inferred for this case by taking the

equation (3) and writing it

dyjr_ h

du~n(y^+z'^)

di-\j/'_ ih/n _^ih/nl,^ihj'nl ,

°^
'd^~W^^^~ T^:^"''T-f«~

^''^
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We now put

l-x= k{^u-pa), l+x= k{fb-fu); (6)

and since IW= — h\ when x= ± ?, or when u = a, or b, therefore

With k positive, and ^b>pu>fa, we take p'a negative

imaginary, and ^'b = — p'a positive imaginary, so that (§ 54),

a=pa)3, b = Wi+ qo}s, where p and q are real proper fractions.

Then di±^-Wa+ W^
^ (7)

du pu— ^a po— pu

and integrating, by equation {^), § 199,

., 1, a-Oib+a) , , ,1 (T(b+ u) „,a/ci\

Now y+^^,2i^^<r(u+aVg+^) (_2^^-2^bK
y— tz (T{u—a)a-(b — u) ^ * ^ '

while

(y+ iz){y — iz) = y'^-\-z^ = V-— v? = k\fu— fa){fb — fw)

_1^(T{u+a)iTi'U'— a) (T{b+u)a-(b— u)~
<7% (7% a-^b cr'u

'

,, , ,
. j(T(u+ a)cr('w+b) , , „,

so that y-\r%z= k '^„ ^
exp( -to.- ^b}u,

(X(Jb CO 0" w

y-''= ^' \aab)^u
'exp(+ ^a+ ^6)u; (9)

thus giving the solution of Lamp's differential equation for n— 2.

209. It is interesting to verify that these values of y+ iz

and y — iz are solutions of Lamp's equation for n = 'i.

Denoting y+izhj 0, and differentiating logarithmically,

_ 1 f'lL—p'a 1 f'b — f'u .

2 fu— pa 2 fb— pu
and differentiating again,

i\fu— <pa) 2 <pu— <pa pb — pu 4!\pb— pu/
+ 2pu-p{u+a)-p(b+u)
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iJ fu— pa fb — fu
But with ^'a= —f'b,

l p'u-p'ap'b-p'u _ 1 ^u-f'%
2 pu-pa pb-pu -t {pu-pa){ph-fur^^^'^-^^'^+ ^^>'

so that ^= 6j3tt+ 3^a

+

^pl,

Lamp's differential equation for 7i= 2, with h='8pa+ ^pb, in

place of the previous value of h=6pv.
From Kirchhoff's Kinetic Analogue in § 207 we may put

where X = ^(a+b)-^a-^b.

With jp'(a-6) = ^'a=-j9'6,

therefore ^(.<^~b) = ^a— ^b;

and, changing the sign of a,

-^ j~ exp(ta— Cb)u =-^d)(u, —a+ b).

(Halphen, i^. E., I., p. 230.)

210. In the slightly more general case of the motion of the

Top, we shall find it convenient to draw the axis Ox vertically

upwards, and to call the angle which the axis 00 of the

top makes with the vertical Ox.

Then, from the principles of the Conservation of Energy and

Momentum, we obtain the equations (Routh, Rigid Dynamics)

iA(d6ldtf+^A sm^d(dyjrldtf = Wg(c- h cos 6), (1)

Asin^e(d\fr/dt)+Crcos9= G, (2)

where r denotes the constant angular velocity of the top about

its axis of figure 00, d-\p-/dt the angular velocity of the verti-

cal plane through Ox and 00, h the distance of the centre of

gravity G from 0, W lb. the weight of the top, and 0, A
its moments of inertia about the axis of figure 00, and about

any axis through at right angles to 00.
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Putting A/Wh= l= OP, as in the simple pendulum, then

P is the centre of oscillation for plane vibrations.

The elimination of d-^/dt between equations (1) and (2) gives

i^sin^43^=,(|-cos0)(i-cos^e)-j<^::i^7

= g^(cos 6

—

cos a)(cos 6

—

cos /3)(cos 6— d), (3)'

suppose ; the inclination of the axis of the top to the vertical

being supposed to oscillate between a and ^,

a>6> 13, or cos a < cos < cos /3 < cZ.

Guided by equation (17), p. 37, we put

cos 6= cos a cos^0+ cos ^ sin^^,

cos 6— cos a = (cos /3— cos a)sin^^,

cos/3— cos = (cos;8— cos a)cos^<p
;

(4)'

and therefore,

1 a= n 7 {^— cos a— (cos /3— cos a)sin^0

}

= n\l — K^sm^(j)),

1 , cos (8— cos a ,0 d— cosB
where k^= S , k'= ^ —,

d— cos a d— cos a

and In^= ig(d— cos a).

Now we may put <p = am nt, and

cos = cos a cn^nt+ cos ^ sn^nt, (5)

so that the projection on the vertical Ox of the motion of a

point on OG resembles ordinary plane pendulum motion.

When d=l and cos a= — 1, then

n^= g/l, ^2= COS2J/3= sin^Kx- /3)

;

G and Or vanish, and the oscillations are in a vertical plane.

But, in the general state of motion,

4 ^'^ _G—Cr cos 6

dt sin^O

1 G+ Gr 1 G-Gt
"2 l+cos0^2 1-COS0

1 G+ Gr 1 G-Gr
2 l4-cosa+ (coS;8-cosa)sn%tt 2 l-cosa-(coS;8-cosa)sn^«<'

so that t/t is expressed by two Third Elliptic Integrals.
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Putting COS 0= ± 1 in equation (3), show that

(^+^y= 2^(1 + cos a)(l + cos ^)(cZ+ 1)

;

(

G-CrV a—/ ) =2|(l-cosa)(l-cos/3)(d-l),

while, in accordance with Jacobi's notation, we put

2 , cos 8— cos a „ „ cos 8— cos a .

1+ cosa '^ 1 — cosa

so that, finally, with u= nt, we find

di\p-_ en Vjdn Vj/sn v-^ en Vjdn "yg/sn v^_ ,„.

du 1 — K^sn^VjSn'^u l—K^sn^v^sn^u
'

and, as in the spherical pendulum (§ 208), we take

v^ = ipK', v^=K+ iqK ',

where p and q are real proper fractions.

In the Weierstrassian notation, we put, as in (6), § 208,

1 + cos Q= h{fu— pa), 1 — cos 6 = k(pb — pu)

;

and thence (§ 224) c— h cos = hk{p(a+ b)— pu}.

Wethusobtain ^=—i?:<^+-M-;
(7)du fu—pafb— fu

but now the relation f'a= — p'b holds only when Gr= 0, or

when the motion of the top is comparable with that of the

spherical pendulum ; on the other hand, the relation p'a = p'b

implies that G= 0.

The Kinetic Analogue of the Top with the Tortuous Elastica

(§ 207) is obtained by putting

a+6±ft), and \ — ^{a+ b) — ^a— ^b.

In the Steady Motion of the Top, a= ^, k= 0, K=^ir;
and the elliptic functions degenerate into circular functions.

We thus obtain the condition for the steady motion, and the

period of the small oscillations,given in 'Ronth'sRigidDynamics.

211. A similar procedure will solve the general equations

of motion of a solid figure of revolution, moving under no

forces through an infinitely extended incompressible friction-

less liquid; the work will be found in Appendix III. of

Basset's Hydrodynamics, vol. I ; also in Halphen's Fonctions

elliptiques, II., chap. IV. The problem is of practical interest

from its bearing upon the determination of the amount of spin

requisite to secure the stability of an elongated projectile.

{Proceedings, Royal Artillery Institution, 1879.)
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212. We again resume the consideration of the motion of a

body under no forces, first mentioned in § 32, as affording a

good practical illustration of the necessity for the introduction

of various analytical theorems of Elliptic Functions.

Geometrical Re-presentation of the Motion of a Body under

No Forces, accoi-ding to MacCullagh, Siacci, and Gebbia.

Quadrics concyclic with the momental ellipsoid, that is,

having the same circular sections, are given by (Smith, Solid

Geometry, § 170)

(A - H)x^+(B- H)y^+{G- H)z^=D¥

;

and now, if we produce the instantaneous axis of rotation OP
to meet the concyclic quadric in F', and denote OF' by R',

{A-H)p^+{B-H)q^+ {G-H)r^= Dh?w^lR'\

while Af+ Bq^+ Gr^= Dh^J/R^
so that, by subtraction,

/7(p^+2Hr^) =mv(i,-i,), or |-^.=§
Along the polhode, R= h sec 6, where 6 denotes the angle

between the instantaneous axis OF and the fixed axis of

resultant angular momentum OC; and then

¥ H
^72= cos29--^, (1)

the polar equation of a quadric surface of revolution.

Since R^ is less than hhec^d for all points adjacent to F on

the momental ellipsoid, therefore in the concyclic quadric

-^2 IS greater than -p ^^.

except at the point F', and therefore the concyclic quadric

touches this quadric surface of revolution at P' and rolls

upon it during the motion.

We may also take concyclic quadrics, given by

(H-A )x^+{H- B)y^+{H-G)z^=Dh\
, h? H M H

and now ^= -^_^^= _^_cos^0, (2)

the polar equation of a quadric of revolution.

In particular, if S"=i>, then ^'sin d= h, the polar equation

of a cylinder of revolution, outside which this concyclic hyper-

boloid rolls during the motion (Siacci, In memoriam B.

Chelini, Gollectanea mathematica, 1881.)
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213. By reciprocation of these theorems, we prove Mac-
Cullagh's theorem, "that the ellipsoid of gyration,

0^ if' z^_ 1

always moves in contact with two fixed points on the axis of

resultant angular momentum, equidistant from the centre "

;

and we also deduce Gebbia's extension of MacCullagh's theorem,

that " confocals of the ellipsoid of gyration, the polar recipro-

cals of the eoncyclic ellipsoids of the momental ellipsoid, slide

without rolling on fixed quadric surfaces of revolution."

In particular, the polar reciprocal of Siacci's cylinder of

revolution is a circle, upon which a certain confocal to the

ellipsoid of gyration slides without rolling.

Geo'nfietrical Representation of the Motion, according to

Sylvester, Darhoux, and Mannheim.
214. In Sylvester's splendid generalization of Poinsot's re-

presentation of the motion of the body, it is proved that a

confocal to the momental ellipsoid rolls upon a plane per-

pendicular to the axis of resultant angular momentum OG at

a constant distance from 0, which plane rotates about OG with

constant angular velocity, and therefore gives a geometrical

representation of the time. {Phil. Trans., 1866.)

The proof of this theorem depends upon two geometrical

propositions, in connexion with confocal quadric surfaces

—

(i.) "The locus of the pole of a fixed tangent plane to a

quadric surface, with respect to any confocal, is the normal to

the first surface
;

"

(ii.) " the difference of the squares of the perpendiculars from

the centre on two parallel tangent planes of two confocals is

constant and equal to the difference of the squares of the

corresponding semi-axes."

Thus, in fig. 25, if OP' is a surface confocal with the

momental ellipsoid OP, then Q, the pole of the invariable

plane GP with respect to the surface OP', will lie in the

normal PQ to the momental ellipsoid at P ;
while the surface

OP' will touch a plane G'P', parallel to the invariable plane

GP, and such that OG'^ = OG^-X\ \^ denoting the difference

of the squares of corresponding semi-axes of the confocals.
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Since is a fixed point during the motion of the body,

therefore C is also fixed.

Drawing the plane QL through Q, parallel to the invariable

plane, and denoting OG hy h, as before ; then since Q is the

pole of CP,

OQ.OV=OP'\ or OL.OG=OG"'= ¥-\^,

so that OL= h-\^/h, LG=X^/h.

Fig. 25.

Again, denoting as before (§ 104) by fi the constant com-

ponent of the angular velocity of the body about OG, so

that the resultant angular velocity of the body about OP is

yu cosec OPG, then the velocity of the point P' in the body is

fA cosec OPG . OP' . sin POP'=^fA.P' V,

where V is the point in which the line OP cuts the plane G'P'

Therefore the angular velocity of P' about the invariable

„ .^. P'V PV PQ \2
Ime Ub IS f^WW^^VF^^OG^^W
a constant ; so that if the surface OP' rolls without slipping

on the plane G'P', this plane must revolve about OG with

constant angular velocity /jX^/h^.

The point P' lies in the plane OQPG ; and since

G'P _G'P'_0G'_0G
GP~ LQ~0L~ 00"

therefore OG' . G'P'= OG . GP,

and P' lies on the rectangular hyperbola PP' ; this is the

geometrical property principally employed by Prof. Sylvester.

{Solid Geometry, Salmon, §§167, 180; Smith, §§ 163, 167.)
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The angular velocity of the vector C'P' with respect to the

revolving plane G'F being -^-f^ri> it follows that, if p, <j)'

denote the polar coordinates of a point P' on the herpolhode

described by P' on the revolving plane C'P' , then

and p^-^= ^(l-j^^y+ .^— _^^,

equations similar to those required for the herpolhode of P.

In particular, if we take X^= h^, then 00'= 0, and the con-

focal OP' is a cone ; and the plane through rotates with

constant angular velocity /j., while the cone, called by Poinsot

the rolling and slipping cone, rolls on this revolving plane,

the angular velocity about the line of contact OH being v.

If we consider the curve described on this revolving plane

by the point H, the foot of the perpendicular from P on the

plane, then p, <p' being the polar coordinates of H (§ 113),

d£_d4_ _A-D.B-D.G-D Jr

dt~dt ^~ ABC p^'^'

so that the point H describes on the revolving plane an orbit

as if attracted to ; and, as in § 89, we shall find that the

requisite central force is of the form Ap+ Bp^.

(Pinczon, Gomptes Rendxhs, April, 1887.)

This is otherwise evident, by noticing that the vector x+ iy

of this curve satisfies Lame's equation (§ 204)

-^{x+ iy)= (2p(,

+

i3v)(x+ iy),

where p^= Jc%^v— pu),

so *»' S=(^'"-#- S?-(^^»-#-
A value of X may be found which makes the herpolhode of

P' a closed curve ; and this closed polhode is an algebraical

curve, when v is an aliquot part of a period, the correspond-

ing elliptic integrals of the third kind becoming pseudo-elliptic.

Abel has devoted great attention to the subject of pseudo-

elliptic integrals (CEuvres, XL), and the algebraical hei'polhode

affords an interesting application of his theorems (§ 218).
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The Addition Theorem, for the Third EUiptic Integral.

215. Theorems (9) and (10) of § 189 show that, employing

the function (p(u, v)oi% 201,

log (j)(u^, 'y)+ log (p(u^, y)= ]og ^(tt^+iij, 'y)+logQ,

or 0Kv)^K^_^
<p(u-^+u^, v) '

or
q-(z'

+

u^a-(v+ u^a-ju-,+ n^ ^^ ,j.

where, expressed by elliptic functions of u^, u^, and v,

f^{u^+ u^) -^{v+ ^. u^+u^ f\{u-^+ 1*2)- fK^*-!- ^^2)""

Also, as in equation (8), § 188,

log 0(t;, u) — log ^(u, v)+ w^v— v^Vb
;

so that

log9&(v, 'M.i)+ log^(w, ^tj)

= log9!>(i;, Wi+ U2)-{^M.^+ fw2-^(wj+ U2)}'!^+ logf2,...(3>

the Addition Theorem for the parameters u^, ih^.

These theorems have been generalized by Abel for the addi-

tion of any number of amplitudes or parameters in the

Third Elliptic Integral, and the proof is a simple extension of

his method, employed in § 162 {(Euvres, XXL).
Denoting by a any arbitrary quantity, equation (7) of § 162

may be written

1 dxr _ 6Xr

a— Xr ^'Xr {a— x,)yf^'xr

Now, since Qa is of lower degree in a than i/^a, and

yp-a= GJl{a— Xr),

it follows that, when resolved into partial fractions,

0a _ „ dXr

\f/-a (a— Xr)\fr'Xr

and therefore, writing fa; and ^x for P and Q respectively, and
A for the value of X when x = a,

„ 1 dXr _6a_ ^^aSta— {aS(pa

a— Xr JXr~\lfa~ [iaf — {<j)afA

_ 1 ^'ia-^a.JA 1 ?,ia^-^a. JA
JA ia-(pa.JA ^a iq,+(j>a.JA

'
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Integrating, with the notation (§§ 197, 199),

where x= i,}u, ^X= —^'u, a= <pv, y/A = —p'v;

^ ^(^^ fa+^aV^ ;>-^/^-x/^ n^-^^f^g^. (5)
^<j>{Ur,v) - ^ia-<pa.JAia+ <f^a.JA <pUr-<S>v' ^'

so that

(j){u'r, V) a-(y+ u'r)

is expressible by elliptic functions, ja and <p', of v
;
provided that,

as in (11), § 162,

^JdxrlJXr^O, or S'U.r=-wV, (6)

the coefficients ia fa and 0a being determined as functions of

<pUr and ^'ur by the plexus of equations (4) in § 162 ; fa and

(p'a being the same functions of u'r.

Thus the function

a-jv+ Ur) ~.

^cr(^+<y ^'^

is an elliptic function of v provided that the sum of the values

— w,. of -y which make the function vanish is equal to the sum

of the values —u'r which make the function infinite ; in other

words, briefly expressed, provided the sum of the zeroes u is

equal to the sum of the infinities v,'.

In particular, with the u'/s all zero, 21*^=0 ; and in equation

(6), § 162, we can put

^a= (fa)2- (<j)ayA = IL{pv- jau,)

;

so that 2 log ^(u„ v)= log(fa+ <j>a. ^A ) + constant.

Thus n^O^.,^), or
^v+^Mv+^^^--i^+ ^^)

(8)

when 'w^-'ru^+u^+ ...+Uij.= Q, (9)

is a rational integral function of fv and <^'v, which may be

written, as in § 1 98,

G=c^+c^fv+ c^f'v+ ...+Ci^^'J'-'^h (10)

G.E.F P
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So also, since (§ 201)

4>{- U, v)(p{ U,v) = fU- pv,

therefore, writing {7 for —Ufi,

r=ij,-l

E log<p(Ur, v) = log,p(U, j;)+ logO+ a constant, (11)

where Q = CI(pU— pv).

In particular, when U=ea, <p{n, v) = ^(pv— ea) (§ 202), and

''n')>(u„ v)= C/^(f>v-ea), (12)
r=l

when tij+ U2+ ttg+...+ w«_i = a)a-

By an interchange of amplitude and parameter,

2 log ^(m, V,) — 2 log ^(u, v'r)= ^ogQ— pu, (13)

provided that Xvr= Xv'^.

Q being a function of pu, p'u, pv, p'v ; and

216. A further application of Abel's Theorem of § 162 shows

that p is expressible as a function of pv and p'v; this is the

generalization of the Addition Theorem for the Second Elliptic

Integral, given in § 186.

and this case can be determined as a degenerate case of the

preceding result; since, making a = <x>

,

J sj^r J \a— Xr ' ij^r J a— Xr iJXr

= the coefficient of 1/a^ in the expansion in ascending powers

ofl/aof
1 ^ fa-0a.V^

Thus, with X= ix^— g^x— g^, and a;= ^t;,

then t,v=fx(lxlJX;

and p or 2(fvr- ^v'r)= - 2 It-^ tanh -
'^x/^, (a= oo ). (15)

Jacobi calls JA the factor of the Third Elliptic Integral.

(Ferifce, II., p. 494.)
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217. Similar results hold when, as in § 167, X is supposed

resolved into two factors, Xj and X:^.

Denoting F^X^- Q'X^ by V^,
and vai-ying the arbitrary coefficients in P and Q, and conse-

quently the roots of \/fa!= 0, as in § 162, then

y}r'x,.dx,.+ 2P^P . Xi- 2Q5Q . X2= 0,

while PJX^+qjX^= 0;

so that y^'xdxr - 2(Q3P- P8Q)J{X^X^ = 0,

dXr „QdP-PSQ dXr
or ,4r =2 —

iJXr yJr'Xr yJr'Xr

and - 1,dx.rliJXr= (i, or SUr= Su'r.

Again, as in § 215,

„ 1 dxr _Oci' _n <P<^S ^^~ fi* ^0*

_ 1 Sia .JA^- §(j>a . JA^ 1 Sia. JA^ + S(j>a. JA.;^^
~JA ^ia7jA^~^<jxi7jA~JA fa . JA-^+ (j>a . JA,

-j^ ^ log
^^ J^^^^^ J^^

Thus, as an application to the formulas of §§ 174, 176, 186,

and 189, take, as in § 38 (Durfege, Elliptische Functionen, § 36),

X= X^X^, where X^= x, X^= {l-x)il-kx).

Then, with x= sd?u,

y'dx „ rxdx 2, „ .„=2u,y^=j(u-^amu),

^xJX—^^'''''^^-
in Legendre's notation, with ^ = am u, and n= — 1/a.

Now, if, as in §§ 164, 165, we take

P or fx=p+ x, and Q or <px= q,

and denote by x^, x^, x^, the roots of the equation (7), § 167,

^x, or P^X^-Q^X^, or (p+xyx-q%l-x){l-kx) = 0;

then a;ia^2'^3 — 5^

1— Xj. 1— ccg. 1— a;3 = (l+p)^
x^+x.2+x^— kxjX^Xg= —2p;

so that, as in g 164,

(2—x^— X2—x^+}cXyX^x^y — 4!{l—Xi. l — x^ . 1 — 333),

where u^^+ u^+ u^^O.
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Again,

Ja-x-^ JX-^ Ja-x^ JX^^ Ja-x^ JX^000
^ « foV^i^^^fV^. ,, _J^tanh-f ^^ (16)

JA ^ia.JA-^+ <j>a.JA^ JA ta JA^
since x-^, x^, x^ vanish when p and q are made zero ; and this is

equivalent to the result of equation (9), § 1 89, with a = — 1/w,

-o= - = -(!+ %)( H— )=-a

, ^g ^^a_ g^(l-a.l-fa) nqj{-a)
^^"^

ia JA- (p+ a)Ja l-np

n^(— a)x-^x^g

1+n— 71/^(1— x-^.l—x^. 1—x^)

Similarly, for the Second Elliptic Integral,

/x-.dx-, , rxAx„ ,
rxodx.

= -lt-
2a2

i -77—

1

1—r-x tanh-i^^^

—

-—r—. (a= 00 )^(a.l-a.l-Z;a) {p+ a)s/a

= -2\i[-^+l{l-a.l-ka)
, f ,3+-|

Ip+ a ^^ '{p+ af J

= -2g=— 2^(a;ia!2a;3); (17)

as before, in §§ 174, 176, and 186.

218. Abel's pseudo-elliptic integrals are derived by making

the u's equal in equations (7), (12) ; or the v& equal in equation

(13) ; also by making their sum equal to a period coo, or the

sum of multiples of periods, such &s pu>^-\- qu>y

Now jj. log (j){u, v) is of the form log Q — pu,

or (ji(u, vY is of the form e"P"Q,

where Q is a rational integral function of <pu and ^'u of the

form of C in (8), sometimes qualified by a divisor ^(pu— ea).

We begin with the simplest case of an algebraical herpolhode

by taking v = 0)1+ ^(1)3; and then, from equations (39) and (40),

§ 54, we can infer that the value of s, between ej and e^, which

makes ^i~^2-^i~^3^ !iIlS^2:r^^3

is s or ^3^= 63+^(61-63. 62-63).
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Denoting ^u by s, f'u by ^8, and fv by a, we infer that

y^ ds

{s-a)^S
is pseudo-elliptic, that is, can be expressed in terms of

/dsjJS and of i&n-^QJSjP).

In fact, by differentiation of

^ a-s ^ ^a-s

dd , , ,, X //
,,s+ a — 26,

_ Jiei-es)-J(e2-es) W'"

since ip'v= - 2^(ei- 63 . e^- 63) { ^(^1- 63) - V(«2- %) }•

In the herpolhode, therefore, of § 113,

or O= 0-/xi+ Hv/(«i-e3)-x/(«2-«3)}'^*'

and therefore, relatively to axes revolving with constant

angular velocity,

f^-H x/(«i- «3)- s/{e2- e^)}n,

the herpolhode will be the algebraical curve, given by

= i cos ^^ i ->
^ a— s

{a-s) cos W = J{s-e^ s-e^,

(a - sfcos^W = (a - sf- (63+ 2a)(a - s)+ (a- ei)(a- e^),

{a-sfs\n^W+ {Jie^-e^)+ J{e^-e^)Y{a-s)

- V(«i - «3 • «2- ^s)! x/(ei - «3) - Ji^-i~«^Y=^;

where, as in § 1 13, a-s, or js-y- fv.= -3 ^
Referred to Cartesian coordinates, in which

this equation becomes

X \_^y'+{>/(e^-es)-J(e,-es)}'-Ji'j Hh-e,f-Ji' ;

of the form («2-|-6')(2/'+ &') = «* (1«)
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The relation fv— e^= x/(^i~ ^s • ^2~ ^3)'

combined with the equations of §§ 110, 113, leads to the relation

A-I).D-G_A-B.B- G_

and either B= D, which gives the separating polhode ; or

D~A B^C
the relation for this algebraical herpolhode.

Now, from §§ 108-110,

\B a) n^

while, with A>B>D>G, and e^= «i. ^a= «2' ^'> ~ h'

v(«.-3)-v(^2-3)=(^^^z)^(l-SS'

To determine the confocal surface which will describe this

algebraical herpolhode by rolling on a fixed tangent plane, we

must equate the angular velocity of the axes to ftX^jh^ ; and

The squares of the semi-axes of the confocal are therefore

A ^ \A > 2Br 2\C Ar

'

B ^ \B 2 2 BJ 2\'- Br

'

C ^ \C 2 2BJ 2\G a) '

while the square of the distance from the centre of the tangent

plane on which this confocal rolls is given by

The confocal is therefore a hyperboloid of two sheets, of the

T" 1J ^
*°™ —2-?2+~2=i;

a'- 0'' a^

and in rolling on a fixed tangent plane at a distance h from

the centre, it will trace out the algebraical herpolhode (18),

being the preceding herpolhode, changed in scale in the ratiO'

of A to 6 (Halphen, F. E., II., p. 285).

now ^^= 2(^+5)



AND THEIR APPLICATIONS. 231

219. A more complicated case can be constructed by taking

v= w^+^Wg; but now we must choose particular numerical

values for g^ and g^.

If we select the modular angle of 15°, then 2kk'= 1, and in

(C),§53,J"=o3-=-4, J- 1 = 112-^4; so that, by choosing A= 108,

then sr2=15, 5'3=11;

and 61= 1+ ^3, 62=-!, 63= ^-^3.
It is easily verified that, with the above value of v, ^v= ^;

for p2v= — f= ^4^; also this value of pv or s makes, in equa-

tions (39) and (40), § 54,

The corresponding elliptic integral of the third kind in the

herpolhode will now be pseudo-elliptic ; we find, in fact, that,

if e= ^sin-^V(^-^-^r^^^= ^cos-^^^^-'^-^^^!+ ^l
(2s -1)* (28-1)*

d6_ 1 2s-|-5 _j__ , ,^du ^if'v du
ds~'^ 2s— 1 V^~ ^ pu— pvds'

since if'v= —3^2 ; so that, in the herpolhode,

^ y 9v-pu -^

and therefore, relatively to axes revolving with constant

angular velocity /x— \j2n, the herpolhode will be the alge-

braic curve
3V(4«!^4s-ll),

^
(2s- 1)*

or (1 - 2s)3sin230 -f- 9(1 - Isf- 108= 0,

2 2 2

in which 1- 2s= l{fv - fu)= 2^2 fa
= •^^> suppose

;

and now /sin230-|-3cV*-4c«-O, (19)

a curve, consisting of six equal waves, arranged on a circle.

With (i.) ^ > £ > -D > 0, and

then (§113) <pv-ei= Ji= ^^ j^
.

"^"^-"r^ AB 'i— e.

so that
A-D.D-G A-D.B-D

AG ~ AB '
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Then, either A—D= 0, which would give a stable rotation

about the axis A ; or

hhh (20)

so that D is the harmonic mean between B and C.

Again, ^v-ea,=^=-2 ^ .

so that 1^3 =^_j 2'

D ^~ 2 VD £/' £'*"C^ A~ 2\G BJ'
or

or ^-^=-(2+ V3)<^-^); (21)

which is impossible, with A > B > G.

But (ii.), with A>D>B>G, we find that D is the har-

monic mean between A and B ; also

_
0-l=(^+-/^)<5-l)' <^2)

BO that 2+^3 is the ratio of the semi-axes of the focal ellipse

of the momental ellipsoid, and 4/3(v'3— 1) is the excentricity.

Another algebraic herpolhode can be constructed by taking

v= a)i+%w^; and, with gf2= 15, 5^3= 11, we find that

^v=-i+y/3, ip'v= -3^2(2- JS).
Now, if

^^.^.MJ3-l)J(s-e,.8-e,) ^^^_,{2s-10+ 7JS)^(2s-2e,)

(28-2^3+ 5)* (2s-2^3 -I-
5)-^

d9 V2(V3-1) 3^2(2-V3) .

ds~ ' 2\/S {2s-2^S+ 5)JS'
so that

rji^vdu^ r-3j2{2-J2,)ds

J fv-fu J (2s-2V3 + 5)V^

^ ^ J V-Sf (2s-2V3 + 5)t

and now the algebraic herpolhode, with respect to revolving

axes, is given by

(2s-2V3+5)^sin 30= 6(^3- l)V(s-e2-s-e3).

reducing to an equation of the form

p6sin230-l-PpHQ/3H-B=O (23)
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With (i.) A>B>D>C,&nd

pv-ei,= -S+ 2^S =

w-e, = -o

%2 sc

n" AC
A-D .B-Dm'

rp, . A-D.D-G ^B-D.D-G
Therefore ^^ = 2 ^ ,

and rejecting the factor D—G,
D J^ D\ 1.12

or

i-Z=V-£>- 3+5=5 (24)

., D-G A 2^3-3 1 1 2^.3-3/1 1\

G~B^J3\B~AJ' G~B^^>^^~'^Kc~a) ^"^^

so that the excentricity of the focal ellipse of the momental
ellipsoid is ^3 — 1.

With (ii.) A > D > B > G, we ave led to an impossible result.

Points of Inflexion on the Herpolhodes.

220. The oriainal herpolhodes drawn by Poinsot {TMorie

nouvelle de la rotation des corps) were represented with points

of inflexion, as curves undulating between two concentric

circles on the invariable plane.

But it was pointed out by Hess, in 1880, and de Sparre

{Gomptes Rendus, Nov., 1884), that such points of inflexion can-

not exist on Poinsot's original herpolhodes, which are curves

alway.s concave to the centre, as drawn in Routh's Rigid

Dynamics, Chap. IX.; like the horizontal projection of the path

of the bob of a conical pendulum, or like the path of the Moon
relative to the Sun, a good figure of which is given in the

English Mechanic, p. 337, June, 1891, by Mr. H. P. Slade.

The herpolhodes described on planes parallel to the invari-

able plane in Sylvester's representation are capable, however,

of possessing points of inflexion, when the confocal of the

momental ellipsoid attains a certain shape. (Hess, Das Rollen

einer Fldche zweiten Grades auf einer invariaheln Ehene>

Munich, 1880 ; de Sparre, Gomptes Bendus, Aug., 1885.)
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Denoting by h the constant distance from the centre of the

plane upon which a quadric surface rolls, de Sparre shows that

the herpolhode on the plane has points of inflexion, when the

quadric is

(i.) an ellipsoid

a^ b^ c^ a^ 0^ <?

(in a momental ellipsoid, A<B-\-G, or -^<7-2+'2' ^^ ^^^

points of inflexion cannot exist on the herpolhode)

;

(ii.) a hyperboloid of one sheet

1 . 1.1.
2

^-2+ r2-"2=l. 'i'<^' if ^'<a'. and -„>r2+
c? W- & a,'' b' G

(iii.) a hyperboloid of two sheets

-i;— ITT— --„ = 1 , b^<c'^, if Tn > -5+ -s, whatever the value of /*.

a^ b^ c^ b^ a'' c^

These herpolhodes being similar to the original herpolhode

of the momental ellipsoid, when referred to axes rotating with

constant angular velocity /j.\^/h^, can be considered as defined

by the polar coordinates p, 6, given in terms of the time t, by

the equations of § ll-S,

p^^Jc^i^v-^u), (1)

=m+ ~^~^ n (2)
at pv— pu

with u = nt+ u3, v = w-^+ t'w^, m//x = l— X7^^-

Denoting the velocity in the curve by V, and its radius of

curvature by R, then, resolving normally,

V^_dpld/ ^de\_ ddfcPp_ de^\

R~dt p dtV dt) ^diXdP ^dp)'

which will be found to reduce to an equation of the form

^=Pp2+Qp. (3)

wh ere P= m^+ Smw^pv+ nHf'v,

Q= ^m^nip'v — mn^p"v — \nH<p"'v
;

and the corresponding herpolhodes will have points of inflexion

when X is chosen so that Pp^+ Q can vanish.

Thus Halphen points out that the algebraical herpolhode

of § 218 will have points of inflexion, if b^ < ^aP:
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221. The polhode being given by the intersection of the twa
quadric surfaces Ax^ +By^ +Cz^ =I)h'^,

we may in consequence write

where {B-G)a'-+ (G-A)b^+ {A-By= Wh?, •

A(B-G)a^+B{C-A)b^+C(A-By=^WVi^;

and then —,

—

^+ ti^ 1

—

tt^— = 1,

the equation of a system of confocal quadrics, on choosing I

such that /= - .
1 g—I

y^f— .

Then

° ^
~

ABC ' ^'

~
ABC '

a ^^^ a.

By varying X along the polhode, we find

2dx_ 1 d\ dx_l X d\
X dt~aF+X dt'

^^ dt~2 c?Tx dt

so that the polhode is an orthogonal trajectory of the confocal

surfaces, for any one of which X is constant ; and two ellipsoids

can be drawn on which the curve is a polhode, of which the

generating lines of the confocal hyperboloid through the points

are normals.

When these confocals are hyperboloids of one sheet, the

generating lines may be made of material rods or wires,

jointed at the points of crossing ; and now any such a system

of rods forming a hyperboloid is capable of deformation, and

assumes in succession the shape of the confocal hj'perboloids

;

the trajectory of any fixed point on a rod being orthogonal to

the hyperboloids, and therefore capable of being a polhode, if

the hyperboloids are coaxial with the momental ellipsoid of

the body. (Messenger of MathewMics, 1878 ; Senate House

Solutions for 1878 ; Larmor, Proceedings Gam. Phil. Society,

1884, Jointed Wickerivork ; Darboux and Mannheim, Gomptes

Rendus, 1885 and 1886.)
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Darboux has shown (Despeyrous, Cours de micanique, t. II.,

Notes XVII., XVIII.) that if we hold a given generator fixed,

then any point fixed in any other generator will describe a

sphere ; thus, if a rod moves with three points P, Q, R on it

connected by means of bars to three fixed centres A, B, G in

a straight line, any other point >Si of the rod will describe a

sphere about a centre D in the line ABC, such that the A. E.

(ABCD) is equal to the A. E. (PQRS).

The point where the line PQR meets the generator parallel

to ABG will describe a plane, the corresponding centre being

at an infinite distance ; and generally, if one generator is held

fixed, any point on the parallel generator will describe a plane.

The herpolhode can now be described by taking a jointed

hyperboloid, similar and similarly situated, and of half the size

of the former one used for describing the polhode, with one

generator fixed along the invariable line 00, and with the par-

allel generator along the normal PQ at P; and now, if P is

moved in a direction perpendicular to the hyperboloid at P,

it will describe a plane curve, which is the herpolhode.

222. Any point fixed in a body moving under no forces,

whose co-ordinates with i-espect to the principal axes are

represented by a, b, c, will have component velocities

cq—hr, ar— cp, bp — aq, parallel to the principal axes;

and will describe a curve whose projection on the invariable

plane will be given, in polar co-ordinates p and (p, by (§§ 104-113)

p^ = a^+ b^+c^-{^^P±^^^J

_ (bOr- cBqf+ (cAp- aOrf+ (aBq - bAqf

P^-^= {{b^+ c^)p— abq — car}j^

+ {(c^+ a^)q— bcr —abp)J^-

Or
+ {{w^+ b^y — cap — bcq }jr- >

the moment of the velocity about the invariable line 00; and

p, q, r Sbve given as functions of t in §§ 32, 106, and 108.
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The equations are much simplified when the point is fixed on

one of the principal axes, when two of the three quantities

a, b, c vanish ; and it will be a useful exercise for the student

to prove that, in these cases, the curve of projection on the

invariable plane with respect to axes rotating with angular

velocity GjA, GjB, G/C respectively, is given by an equation

of the form

x+ iy = k<j>{u,Wa— v), or k(p{u, wb— v), or k<p{u, wc— v).

Another useful exercise is to deduce Poinsot's relations when

the co-ordinate axes fixed in the body are not principal axes.

Now, if the equation of the momental ellipsoid is

Ax'^+By^+ Cz^-2A'yz-2B'zx-2C'xy = I)h~;

and a p, q, r denote as before the component angular velocities,

and hy h^, h^ the components of angular momentum about the

axes, the three equations of motion under no forces are

where

h^= Ap-C'q-B'r, h^= Bq-A'r-G'p, h^= Cr- B'p - A'q
;

and these equations are solvable by elliptic functions.

(Dissertation Ueber die Integration eines Differentialgleich-

ungssystevis ; Paul Hoyer, Berlin, 1879.)

223. The numerical results obtained in the preceding alge-

braical herpolhodes can be utilized in the corresponding

problems of the revolving chain (§§ 205-206) and of the

Tortuous Elastica (§ 207).

Putting f'= J, or v^Jwg in §206.

then pv = eg—^(ej^— e^.e2-e^),

if'v= 2^{ei-es. e^-e^){y/{e-i^-e^)+ ^(e^-e^)}

;

'^ip'v du
and *=/]

or {s-pv)cos[2\p-+ {^{ej- e^)+ J{e^-e^) }a;wi/a] = J{s-e^ . s-e^),

where s-pv=r^/k^.

In the corresponding probleni of the Tortuous Elastica of

§ 207, it is merely requisite to replace x by the arc s.
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The working out of the analogies for the other algebraical

herpolhodes is left as an exercise; merely mentioning that

Kfwg; 15, ll)=-f,
and that, if

6= ism-^^ *^^
, ^=icos-i —5,

(2s+ 3)* (2s+ 3)*

de_ 1 2s+ l 1 _ 1 1 ip'v 1

ds~ ^2 2s+ S ^S~s/2 ^8 2S+3JS'
rWvdu^ul \f'u

J fw-fv J2 3 {fvu-fvf

224. The analytical expressions in §§ 208, 210 for the motion

of the Spherical Pendulum and of the Top or Gyrostat show,

by comparison with the equations of the herpolhode in § 200,

that this motion may be considered as compounded of two

Poinsot representations of the motion of a body under no forces,

as given in §§ 104, 214 (Jacobi, Werlte., II., p. 477).

The relations connecting these two component Poinsot

motions have engaged the attention of Darboux (Despeyrous,

GovjTS de m^canique, II., Note XIX.), of Halphen (F. E., II.,

Chap. III.), and of Routh (Q. J. M., XXIII.).

We may put the conclusions arrived at by these mathema-

ticians in the following condensed form, depending on funda-

mental dynamical and geometrical considerations.

(i.) If the vector OH represents the axis of resultant angular

momentum, then H lies in a horizontal plane through the point

G, where the vertical vector OG represents G, the constant

component of angular momentum about the vertical.

(ii.) If the plane drawn through H, perpendicular to the axis

of the Top, cuts this axis in G, then OG=Cr, the constant com-

ponent of angular momentum about OC, the axis of the Top.

(iii.) These two planes, one horizontal and through G, which

we shall call the invariable plane of G, and the other through

G and perpendicular to OG, which we shall call the invariable

plane of G, intersect in a line HK perpendicular to the vertical

plane GOG ; and if HK meets the plane GOG in K, then

GH^- GH^= GK^-GK^= OG^-OG-'= G^- G^r\

(iv.) The instantaneous axis of rotation 01 lies in the plane

HOG ; and if 01 meets GH in /, the resultant angular velocity
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about 01 is OI/G; also CIIGH^C/A,
and the velocity of C is r . CI.

(v.) By equation (i.) of § 210, the square of the velocity of

is (20^ WglA)(c - h cos 6)

;

so that Cr = (2(72 WgjA)lc - h cos 6),

CH^- = 2AWg(G-h cos 6)

= 2A Wghk(pw— pu), suppose.

Then, by equation (3) of § 210, with u= nt+ (t3s,

^InWp'^u= gJ<?(&u- ^a)(pu- ^b){pu- fw)- (a

+

^fuf ;

and therefore, when u= a, b, w, we have three equations of the

form ip'a=a+ l3^a,— ip'b = a+ j3fb, ip'w=a+ ^p'W;

so that, according to § 165, we may put iu= b — a.

(vi.) Now QH^ = 2AWghk{p{b-a)-^u}-0^+Ch'^
= 2A Wghk(pw'— pu), suppose,

where piv -p{a+b)= -(G^- OV2)/2^ Wghk
;

and since

. G+Gr „ , . G-Gr ., ,,

''J{2AWghk)~ ^"^ '^' ''J{2AWghk)

and 2 = k(pb — pa),

therefore pw'— p(b — a)=— y~—-—
to'

(pb-pa)^

and therefore (§ 151) we may put w'= b+ a.

(vii.) The point H moves in the invariable plane of G with

velocity equal to the impressed couple of gravity, and parallel

to the axis of the couple ; so that the velocity of H is in the

direction HK, and equal to Wgh sin 6 ; and the moment of this

velocity about G is Wgh sin . GK.

But GK &{-ae^OG~OG cos Q,

so that p%d(j>/dt) = Wgh{Cr- G cos 6),

if p, <f>
denote the polar coordinates of H in the invariable

plane of G.

Now p^=^2AWghk{p(b+ a)-pu},

and cos 6= k{pu— hpa— ^pb)

;

so that finally we shall find, after reduction,

^=_^+ W(b+ a) ^ .

dt 2A p{b+ a)— fu '

and therefore H describes in the invariable plane of G a her-

polhode with parameter 6+ a.
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(viii.) Similar considerations will show that the curve de-

scribed by fi in the invariable plane of G is also a herpolhode,

with parameter h— a.

If in equation (2) of § 210 we replace Or by At', the motion

of OG is unaltered, but now the momental ellipsoid at becomes

a sphere, and OH is the instantaneous axis of rotation ; so that

the motion of OG is produced by rolling the cone, whose base

is the herpolhode described by H in the invariable plane of G,

on the cone whose base is the herpolhode in the invariable

plane of G, the angular velocity being proportional to OH.

(ix.) But in the general case, where 01 is the instantaneous

axis, the curve described by / in the invariable plane of G is

similar to the curve described by H, and is therefore a herpol-

hode.

Now from (v.), drawing GM, IN perpendicular to OG,

OP = OG^+GI^

= G''r''+ {2G^WglA){c-0G+GM)

^C^r^+'-^Jl(c-0G+-^.GN),

so that 01^ varies as the height of I above a certain horizontal

plane ; and the locus of 1 is therefore a sphere, to which the

point and this plane are related as limiting point and radical

plane.

The motion of the Top can therefore be produced by rolling

the herpolhode described by / in the invariable plane of G on

this sphere, with angular velocity proportional to 01.

(x.) It still remains to be shown that the cone described by

01 in space round OG is a herpolhode cone ; this is left as an

exercise.

Darboux shows that two such hyperboloids as those described

in § 221, with a pair of generating lines, PQ, PQ' in coincidence,

and the opposite generators OG, OG of the same system inter-

secting in a fixed point 0, may be used to represent the

motion of OG, the axis of a Top, when OG is held vertical;

the point P of intersection of the coincident generators being

made to describe herpolhodes in the invariable planes of G
and G, by being moved in the direction of the common normal

of the hyperboloids.
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225. The numerical results of the pseudo-elliptic integrals

of §§ 218, 219, and 223 can be utilised for the construction of

similar degenerate cases of the motion of the Top.

Thus, if a = ift)3, 6= ft)i+ ico3,

then b+ a= w^+ u}.^, b— a= wi;

aud we shall find cos a = 0, cos /3= /c, d= sec /3, and

CV2

=

2A Wgh sec /?, G^= 2A Wgli cos /3.

The spherical curve described by C is now given by

sin 6 sin(nt cos /3— i/r) = ^{cos 0(cos /3— cos 0)},

sin 6 cos(nt cos /3— i/r) = ^(1 — cos /3 cos 6).

With a = iftjg, 6 = ft)j— lajg, and 6+ a= Wp

we find that cos a, cos /3, and d are unaltered, but Cr and (?

are interchanged
; and C now describes the spherical curve

sm6sm(nt— -\[r)= ^{cos6{!iec^— cosd)},

sin cos('nt— -\}f) = ^(1 — sec /3 cos 0).

Again, with = 1^,3, 6 = &)j — ^Wg, (72=15, (73 = 11;

so that pa= —^, pb = ^, we find that

A-= l, cosa=-V3+ l> cos/3=-J, cZ= ^3+ l, CV- = 4^%/<;
and the spherical curve described by G is given by

sin^e sin Sx//-= ( - 1 - 2 cos 0)*

sin^e cos 3i/r= (1 + cos + cos^e)y/(-2 + 2 cos 9- cos^O).

To realise this motion practically, place a homogeneous sphere,

of radius c, inside a fixed spherical bowl of radius a, in contact

at an angular distance of (50° from the lowest point, and spin

the sphere about the common normal with angular velocity

V{«C-)}-
The sphere if released will roll on the interior in this curve.

As another numerical illustration we may take

5-2 = 48, ^-3 = 44.

when PK+ ifJs) = -> Fl»3= - 4 ;

P'K+ >3) = - f'>s = 6 'V3-

Also, with (72 = 30, 5-3 = 28, w^jui^ = i^2,

FyW3= -0-1,^6, ^tw3=l-W<5. etc.

Q
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The angular velocity of H round G is again equal to ^QjA.
C. With 6+ a = a)j, or q+ <p = 0,

,_Or_l+cosa coSyS

.

G cos a+ cos (8

and now yp- is pseudo-elliptic, and given by
i/.= V(cos a+ cos /B)J{ig/l)t- f

;

while the angular velocity of H round C in the invariable

plane of G is constant and equal to ^Cr/A.

D. With 6+ a = a)i+ a)3, or g+p = l,

^ Ci- 1+dcosa
coS;8= -^- = —J-.

(t cos a+ a

V'= x/(cos a+ d)J{\gll)t - f',

and the angular velocity ofH round G in the invariable plane

of G is again ^Cr/A.

E. With 3= 1, 6= coi+ cog, G— Cr= 0, and i/r2 disappears ; and
now cos ^= c/h= I, the Top being spun originally in the

upright position.

Now if the Top falls ultimately to the extreme inclination a,

we find that G^r^/2A Wgh = 1 + cos a

;

and subsequently, after a time t,

sin ^0= sin ^a sech{sin ia^{gll)t},

, Grt . ,
/cos — cos a.

^=2Z-^^^ V i + cos0 '

so that the integrals for t and t/^ are pseudo-elliptic.

F. With q = 0, h = w-^, G— Gr= Q, and i/rgagain disappears; but

now d= \, and the Top does not rise to the vertical position.

For numerical illustrations of this motion, take

a= %o>^, and g^= \o, g^= l\, when J3a=— f;
or g_^=^s, 5^3= 44, when pa=—4.

G. With p= l, a= t03, G+Gr= 0, and i/r^ disappears; now
cos a= — 1, and the Top passes through its lowest position.

For numerical examples of pseudo-elliptic cases, employ the

results ^('"i+ia's; 15) 11) = |) ^nd <p{od-^+ \u>^; 48, 44) = 2.

H. With 23= 1 and q=\, G= and Gr=0; and the motion

reduces to plane revolutions, as in § 18.

I. With p= l and q = 0, G'=0 and Cr= 0; and the motion

reduces to plane oscillations, as in § .3.

K. With j)= l, gr =0, cZ=l, cos/3= — 1, cosa= —1, the pen-

dulum is at rest in its lowest position.
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The Trajectory of a Projectile, for the Cubic Law of Re-

sistance.

227. An immediate application of the function <p(u, v) of

§ 201 occurs in tlie solution of the motion of a body under

gravity in a resisting medium, in which it is assumed that the

resistance of the medium is in the direction opposite to motion,

and that it varies as the cube of the velocity.

Refer the motion to oblique coordinate axes, one Ox in the

direction of projection at the point of infinite velocity, and the

other Oy drawn.vertically downwards.

Denote by w the terminal velocity of the projectile in

the medium ; so that if W denotes the weight in pounds, the

resistance of the air at a velocity f is a force of W{vj'wf

pounds, and the retardation produced is g{vjwf.

The equations of motion are then

dP'X _ _ g /dsVdx
dt^~ uAdt) "ds'

^^^

d^y _ _ g fdsV dy
dt- vy^KdtJ ds'^^ ^^^

Eliminating the term due to the resistance,

dx dh/ d^x dy _ dx

dt dt-
~

di? ~dt "'^'di

or, writing p for dyjdx,

dp dt dp dx
di=^dx'''' dtdt=^ ^^^

If Ox makes an angle a with the horizon, then

ds^ _dy^ dy dx . dx^

dt^" df- ~ di dt'''''"^ dt^

= ^20''-22'sina+l),

and now equation (1) becomes

d^x_ g /dsV dx

df~~^\dt) dt

^'(S)*S=- W (/-2psino + l),.* (4)
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Integrating, noticing that dxjdt = x , when p = 0,

di)
^^^^ -P^sin a+p = ^P,iw

suppose, where p^— Sphin a+ 3p is denoted by P

;

or -y-=wP (o)
at ^

so that 4^=p-S,
i(r dp

9_dy

w^ dp

an<i %=fp-^dp, (6)

IT^-.^-vF-

%=fpP-^dv; (7)

while ^= ftpK
dt w

t=/P-^^P («>

228. The integration required in (6) is similar to that of

ex. 8, p. 65, discussed also in § 157; we substitute

z— in^P^lp,

where in is some arbitrary constant factor ; and then

4<z^—g^ = {{^in^—g^'p^— \2rrh^p sin a+ 12m*}/|J^

which is a perfect square, when

4m' —g^= Sm'sin^a, or g^= m'(4— 3 sin^a)

;

so that x/(*^~ 9z) —^^V^C^ ~P ^^'^ ")/?'

y/{4<z^-g^)~ p^

dz _ m^jZdp dp gd^
""^

J{^^-gy~ W^ ~ mJSP^~ y''

on choosing m^= J ; so that

gx_ f"" dz

-=f(5;0,^3) ('J^
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„, ,qx psina— 2.Then f^ „= -—s
'

and supposing x= a ai the vertical asymptote, where 2^=^

,

,qa sin a ga 1

^^= 3 V^= 3'

so that fP-^, — ^^=s7'

or

and, integrating, y—/ '^'^'

the equation of the trajectoiy.

It is convenient to write u and v for gxjw^ and gajw^
;

and now ^= / -^ — (H)

to be integrated by the preceding rules of § 198.

Rationalizing the denominator f'v— f'u, it becomes

(^"'v— p'^u or 4:(p^v— f^u),

since ,92
= *^ ! ^^^ resolved into linear factors, it becomes

4(pv - fu)(wpv- pu)(oo^pv- pu),

where w, oo^ denote the imaginary cube roots of unity, viz.,

»= -i+ W3^, a,2= -I- W3i-
Now, resolved into partial fractions,

6p^v _ Gf^vip'v+ p'u)

p'v— p'u~ 4(j3%— p^u

)

1 p'v+ p'u 1 p'v+ p'u 1 p'v+ p'u

2 pv — pu 2 topi' — J3U 2 ft)''^'?;— j3U

1 p'v+ p'u 1 p'aj-u+ ja'tt
,
1

:+r^<^
2 pv— pih 2 pwv— pu 2 pu?v—pu

on making use of the results of § 196, when 5'2= 0.

Then

w^ J 2 pv—pu J Ipuiv —pu J 2pw^v—pu

which is prepared for integration as required in § 198 ; and since
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= — log (T{v— u) + logau—u^v+ constant

, <t(v— u) I- , ,

therefore the result of the integration may be expressed by

2^= — log0(— tt, v) — (0 log <p{-u, wv)-w^log^{-u,a)^v)....{13)

The conditions of Homogeneity of § 196 also show that the

last equation (13) may be written

—„=-3uci'-log -5= ^-wlog -^ -coHog——s .

or simply

•^= - Su^v - log s-(i; -u)-w log cr(oov ~u)- co^log (t{w^v - v.), (14)

subject to the condition that y= 0, when u or x— 0.

The equation is left in the complex imaginary form, as there

exists no theorem for the expression of

log(r(cov— u) in the form P+ iQ;

unless we introduce a new function $(a, a), defined by

(Halphen, F. E., I., p. 151)

$(a, a) = /{l{a+ia)+ ^{a— ia.)]da.

229. For the expression of the time t in the trajectory,

equation (8) leads to

-du
XV J fV—fU

^ Apv-ptv J 2foov-pu J I 'gi)i''v~fw

when resolved, as before for y, into partial fractions ; so that

— = —\og(p{ — u, v) — w^log(p( — u, wv) — a)\og^{ — u, w^v),

or =— log ^ — a)2]Qg_^ : — tolog ;,

—

-,

° rr" crwr ° croo'V

or simply

= — log a{v— u) — w^log cr{tiov—u)—w log a-(w^v— u), (1 6)

subject to the condition that t= 0, when x or u= 0.
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By addition,

'—2+'^^,= -3l0g9f)(-t(„ v)+log(p(-u, v)4>{-u, cov)<p(-u, whj);

= _ logi"^- '"')e''-i«V+ locr
o-f^-^Vfa^-^)'^^^'^—^)

I a-f 0-16 j
°

crz; 0-0)^ crw^W <r%
'

and this last term, when expressed in a real form, is equal to

(Halphen, F. E., I, p. 232.)

This can be proved independently ; for

!!:+'-!+ 31og </.(-», ^), . j,4.(— u, v)

^+^\z..
i^v— itpu J 2 pv — pu

/—()p^udu , , , , , , ,
',,„,—

-r^ -'— = ^og(&v— fiju)+ & constant (17)

230. For the purpose of the expression of y and t in ascend-

ing powers of X or u, it is useful to employ the function

C"-^", which we may denote by i/r(— u,v) or \]/

;

so that \j/{— u, v) = a-u (p{— u, v), and ^p = l, when u= 0.

We ma}' now write

gy/w^= — log •i/r( - u, v) — CO log i/^( - u, wv) - w^log •>/r( - u, w^v),

gt/w = — log i/f ( — u,v)— co^log
-yp-i
— u, cow) — CO log \/^(— w, co^i')'

Differentiating logarithmically,

= -Upv+ -:^pV-^jP V+...

on expanding the second side by Taylor's Theorem ; so that,

integrating again,

\0g\lr{-U,v)=-,^pV+^pv--~p"v+ (18)

Then, with ,92
= 0, and pwV= (iopv, etc.,

\og^l^{-u,co v)= -^^^oopv+~p'v-~wYv+ (19)

log,/,(_tt,co'^y)=__^j-ft,Vc;+ --j3'v-—£0^3"-^+...; (20)
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SO that ^^= 3(^_j/,_^_j,0'V+^^^^,(»-.-),,_,..j (21)

and here u = gxjw^, g.^= 0, g^ = t;V(4 — 3 sin-a), fv= l,

ip'v= -^sin a, fv" = -i
,fv"= -| sin a, ja^™'f= 4-^sina, ja^"''?; = "V-si^a, . .

.

231. When p^, p.^, p^ denote the values of^ corresponding to

three points defined by the values a:^, x.^, x., of x, or -Wp u^, u^

of u, such that

x-^+ .V2+ x.^= Q, or u^+ v.2+ u^ = 0,

then, according to § 145,

(^l^iP3)^=PlP-2P3- iP-2P3+lhPl+PlP2>^^a+2}j^+p,+P3. (23)

This Theorem follows also as a corollary of Abel's Theorem,

as applied in § 166 ; and it is interesting to proceed to the

determination, in a similar manner, of the corresponding values

of 2/1+ 2/2+ 2/3. and ti+ t,+ ty

Changing, in § 166, x into p and y into P^, then from (7) § 166,

;y2(^2/i+ c^2/2+ ^2/3) =PiPi ' ^<^P\ +P2P2 ~
^^(hh+P3P3 '^#3

3_(p^Sa+p^ plSa±Pj,S§^ p^^Sa+PsS^X ^ _ 3Sa^
_

a^-l\Ps-PvPi-P-2 Pi-P2-P2~Pi P2-2h-P-i-pJ a^-l'

'
(dt^+ dt^+dQ =P^-Hp^+ P.{- kip,+Pf idp^

lU

3 f (affi+ /3)(jVa+ ^

a^-ll {Ps-PiKPi-P2

S^) \^_3aSa.

.2)
'

) a^-1

Therefore

^(2/i+2/2+2/3)=3/' J^
= — log(a — 1 ) — to log(a — w) — ft)^log(a — to"), . . .(24)

= — log(a — l)-ft)^Iog(a — to)— a)log(a — <o^); .-(25)

pi— pi pi— pi pi— pi
^vhere a= °^-^^ =^3-^1-=^^^-^; (26)

P2-PS P3-P1 P1-P2
and a = 00 ,

when Pi =^^2 ="^3~ ^'

As a corollary from the preceding expressions for y and t in

terms of a; or u, it follows that

aiv— u^)a-(v— -it2)g-(f - M-g) ^ __1

Cr3(^(Tl<'itrM'20"l'3 rt—

1
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232. By taking x^= and 253= 0, then

Pi+p^—p-^p^sin a — O, or l/pj^+ l/p^= s[n a,

when x^+ x^= 0, or Ui+ W2 = 0.

Now, from equations (13) and (16),

^iiVl+ 2/2^ = - ^Og(pU -pv)~C0]Og(pU- copv)- u,nog{pU- ft,V>

= _ 1 log (f!izJ?^^ V3 tan-/-^,

I (i^i + ^2 ) = - log(Ftt- F^)- (^^^ogipu- wpv) - ft) logC^u- co^pv)

= _1 log if!ii:f^+V3 tan-^^.
2 ^^%— ^^v) ^ 2pu+ pv

In particular, when u= a)2> then

and ^^= -3ft,,f.-^ogiq^-^Stan-,^,'

^= _ 1 log (^^l%i^3 tan--^.
so that the expressions for y and t are pseudo-elliptic ; and, at

this point, ^ = 2 sin a.

233. We may now investigate the properties of certain points

on the trajectory.

When u= 2ft)2— v,

then pu= i, p'vb= — ^ sin a, and p = cosec a.

so that the tangent is perpendicular to Ox.

The velocity in the trajectory is given by

'w{p^— Ip sin a+ 1)*( p^— S^^sin a+ 3^)"*,

and this is a minimum, by logarithmic differentiation, when

j>— sin a _ ^^— 2p sin a -I- 1 _ ^
j3^— 2psina+l j3^— o^^sin a+ 3p

~
'

or ^^cos^a+iJsina— 1 = (27)

If the tangent AB makes an angle j8 with Ox at the point A,

,, sin R
then p =—,

' ^, ,

^ cos(a— p)
so that the relation becomes

tana=-2cot2^ = tan/3-cotj8 \W)
Then ^(^+ tan^a)= tan ^+ cot /3= 2 cosec 2/3,

or s/i^ga) = W(* - 3 sin^a)= f cos a cosec 2^8.
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The relation (28) is equivalent to a number of other re-

lations, such as

tan(2/3— a) = tan a— tan 2/3= tan a+ 2 cot a,

tsiu(a-/3)= cot%
tana= {cot(a-/3)}*-{tan(a-;8)}*,

3 tan a+ tan^a = 2 cot 2(a- ;8)= cot(a - /3)- tan(a- j8),

tana={cot(a-/3)}^-{tan(a-/3)}*, etc.

Also, since p = -. ^~,
sm a — 'Spu

therefore, at these points of minimum velocity,

p'^u = ^(4!— Ssm^a) = Sff^, and p^u=g^,

and therefore p2iC=pu, or u = |co2, as in § 166.

The integrals for y and t at these points of minimum velocity-

are therefore pseudo-elliptic, and depend on

r ds -, r sds

integrals first considered by Euler (Legendre, F. E., I., Chap.

XXVI.).

We find, by differentiation, that

#tanh-4g|^)=-W3^^7Tl~T^ (29)
ds ^(4s2-l) ^^ s-1 x/C*" -0

V(4s'-1)+V^(^s-1)

- W3 3
8-\

V(4s^-1) V(4s'-1)+ n/3 V(4s'-iy
'"^^

I /S'^tan-i /oV(-^«^-l)-x/3(2g+l)

_ W3 , 3 s-\

by means of which the results can be constructed ; and

noticing that, if s= pv, ^{is^— ] ) = p'v, (/g = 0, (/g= 1 , then

V(46-«-l)+ V3(2..-l)~^^ ^''^^•

V3^(,,3_i;+^3;,,_,; =F(^-K),

we find finally, when u= \u32,

gylv? = lw^i,w,-'^w^b + \ log'K^'-f^a)- W3tan-V(w-|co2), (32)

gtlw = 2i;fw2-|co2fft)2 + J logF(v-f«)2)+W3 tan-y('y-§a)2). (33)
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234. Denoting by 6 the angle which the tangent at any

point makes with Ox, the tangent at 0, the point of infinite

velocity, and by (p the angle which it makes with the tangent

at A, the point of minimum velocity, then 6= ^— <p, and

_ sin _ sin(/3— 0)

^
~ cos(a— 0)

~ cos(a — ;8+ ^)
'

so that
^^na-Sf'v,^l^ cosia-^+ 4>)

2 p sm{/3-4>)

and ,^^ smas\n{^-4,)-2cos(a-^+ ^)

sin(/3-<p)

_ ^
cos(;Q— ^)+ itanaBin(/3—

^

)

- - " '^^^ «
sin(/3-0)

^

_ ,
u( >s(/3- 9!))

- cot 2^ sin(
/
3 -j/.)

„_,cosa-- -

sin(/3-^)

„sin(/3+ 0).= — 2 cos a cosec 2h . ;' —^i^
,

^sin(/3-9!>)

and since -

'|o)2 = — >/(3c/3) = — ^s^(-i — 3 sin^a) = —
;^
cos a cosec 2;8,

tan 9!) _ <p'u— p'^Q}^

therefore ^4|±^)= ^;^-,

_ /34'\

tkn^ p'u+ p'^o}^

Therefore, at points defined by Uj, u^, where the tangents

make equal angles with the tangent at A,

Thus, if 'M,j = 0, then ii^= w.2] and the tangent where u^w^
makes an angle 2/3 with Ox.

By the principle oi Homogeneity of § 196, we can select any

arbitrar}"- value of gTg, and it is convenient to take ,93
= !; and

.,. qx u ^, qx „ ,qx , ,

now, ir ''—= then o'^— = m^pu, «> '—5 = m^p u,

where m^=g^, in = {4:--3siu^a)^/y/3.

With ^2 = 0,^3= 1, we have found, in § 166,

^§0)2=1, ^'§0,2=-^3, p'icO^= >JS.

Again, if ~=^ then° m w^

fv= (4— 3 sin^a)"*, f'v= ^3 sin a(4 — 3 sin^a) ^ = — ^3 cos 2/3

;

so that, as a increases from to Itt, p'v increases from to ^3,
and V increases from Wj to ^w^.
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Denoting the analytical expression for tan ^/tan /3 in (34)

by X, then X is independent of a or /3, and therefore a Table

of numerical values of X, with u or mgx/w^ for argument, will

serve for all trajectories.

It will be a useful numerical exercise for the student to

prove that corresponding values of u and X are

4/3(V3+ l)-V2 .

1
1

iw2,

4/2'

V3 + 1-V24/3.
2

|a)2, ;

^3-1-^2^3,

f(«2.

-1;

4/3(x/-3 + l) + x/2 .

2^2
00

.

Examples.

Prove that, with (/2 = 0, (73= 1,

0^14— 1

3. ja (u- fco2)f( 't+ f'^a) = (^^_i)s
-

•5- A "^^
/.,
= ix/3u - tV log f(w - >2)-tVx/3 tan - i^^h -^a).

6. /.^^^ = - tV log ?>(« - f«2)+Ax/8 tan " V{u - .>,).

7. Integrate (s^^t)-^ (g)w)-^ (fu)-'i



CHAPTER VIII.

THE DOUBLE PERIODICITY OF -THE ELLIPTIC

FUNCTIONS.

235. Besides pointing out the advantage of tbe direct Ellip-

tic Functions obtained by the inversion of the Elliptic Integrals

(§ 5), Abel made an equally important step (Crelle, II., 1827)

in showing that the Elliptic Functions are doubly-periodic

functions, having a real period, 4^ or 2K, as already defined

in § 11, and an imaginary period, i^K'i or 2K'i, where, as

before in § 11,

K' =Jd-^IJ(l - K'%inV) = Fk.
*

Doubly-periodic functions make their appearance when we

consider functions of a complex argument w= u+ vi.

Denoting x+ yi hy z, we have already discussed in § 179 the

system of confocal conies given by

s= c sin w, or c cos iv, when ^6 or t) is constant.

dz

and the poles of this integral, as defined in § 54, are given by

z= ±c, the foci of the confocal system of conies.

Changing the origin to a focus, then

r dz

J^(z.2c-zy
and z— 2c sin^|w,

2c — z= 2c cos^'w,

dzjdw=csmw.
Denoting by r, r' the focal distances of a point, then

r^= (a; -|- yi){^— yi) = 4!chm^{u+ w)sin^J(w— vi),

254

In this case 1^= / ,, „

—

w =
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or r=-lc siu ^(-1*+ to) sin \{u—vi),

r'=2c cos ^(u + m)cos ^{u— vi)
;

so that r'+ r=2c cos vi= 2c cosh v,

r'— r= 2c cosu,

giving the confocal ellipses and hyperbolas, for which v and u
are constants.

It is convenient to denote x— yi by s' and u— vi by w'

;

and now the Jacobian

J.
3(.r, y) „ . .. , , ,J or -,—^- = c'sm w sin i« = frr

.

d{u, V) *

236. Now, if we consider the integral (11) of § 38,

dzw JJ\z.\-J{z.\-z.\-kz)'
then z= '&r^\w,

\—Z = Q,V?\W,

\—]cz= d,x\^\w,

dz/diu= sn ^lu en ^w dn ^w
;

and the pole-s of the integral are given by 2;= 0, 1, and l/k.

Denoting by r, r', r" the distances of a point from these

poles or foci 0, 0', 0" in fig. 26, then

r'= sn Jtysn^ty', r= cx\\iucn\w', A;r" = dn Jw dn ^ly'

;

or by means of formulas (2), (3), (5), (28), (29) of § 137, with \w
and Jw'for w and v, and therefore u and iv for u+ w and u— v,

cnvi—cnu 1 dn^i— dnw
r =

r=

dnm+dnu k'^ cnm+ cn%'

cnrndnu+ cniidnvi k'^ dnw—dnw
dnm+ dnu k^ cnvidnu— cnudnvi'

, „ cnt;idnu+ cn ttdnui ,„ cnm— cnw
ICr = r-: =K^cnw+ cnii cn'fidiitt— cnudnm

From these relations, by the alternate elimination of u and i;

r+ r'dn vi= en vi]

r— r'dnu =cn'U. J'

or kr"+ kr'cn. vi= dn vi\

kr"— kr'cn u = d n u /'

or A;/-"dn vi — kr cnvi = l — k]

kr"dn u — kr en u = 1 — kj'

the vectorial equations of one and the same system of confocal

orthogonal Cartesian Ovals (fig. 26) ; also J=krr'r". (Darboux,

Anncdes scientifiques de I'^cole normale sup^rieure, IV., 1867.)
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As we travel round one of these curves and make complete

circuits, each enclosing a pair of poles of the integral w, defined

either by and 1, or 1 and Ijk, the integral increases by

constant quantities ^K or 4iK'i, the corresponding periods of

the elliptic function sn^w, as in § 55.

y

Fig. 26.

By making k = 0, we obtain the degenerate case of the

confocal conies, and now K=^ir, while K'=x\ so that the

circular functions have a real period 2ir and an infinite

imaginary period; on the other hand, the hyperbolic functions,

as illustrated by the confocal ellipses, have an infinite real

period and an imaginary period 2iri.

Mr. J. Hammond has shown, in the American Journal of

Mathematics, vol. I., how these Cartesian Ovals may be de-

scribed mechanically, by means of reels of thread, as in the

case of the confocal conies of § 173.

He takes two reels of thread, of difi^erent diameters, fastened

together, and pivoted on the same axis at G. Now, if the

threads are led through a pair of the foci, and 0', the curves

r±lr'= c

will be described, if the diameters are in the ratio of I to 1.

By leading the threads round an oval, as in fig. 26, theorems

can be obtained, connecting arcs of confocal Cartesian Ovals,

analogous to those of Graves and Chasles for elliptic arcs.
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237. By inversion of this system of confocal Cartesian Ovals,

we shall obtain another system of orthogonal quartic curves,

with four concyclic foci A, B, G, D, defined by the vectors

z= a, ^, y, S, suppose ; and now

w=fdzlJ{z—a .2-/3 . z-y . z— S) ;

or, writing w for wj^{a—y . /3— (5), then, from § 66,

fi
— S.z— a „, a — B.z—S ,, a— B.z— y , „,

a—S.z— /3
- a— S.z— ^ ^ a— y.z—^

^

Denoting by r^, r^, r^, r^ the distances of a point from the

foci A, B, G, D, then, from these equations,

8—S

r

a— 8

T

mod. ——-. — = sn iw sn iw', mod. ^i -*= en ito en ^w',
a-Sr^ ^ ^ a-S r^

^ ^

mod. — —= dn Alt; dn iw'

;

so that we obtain the vectorial equations of these orthogonal

quartic curves on replacing r, r, r" in the equations of the

Cartesian Ovals by these expressions.

(Proc. Gam. Phil. Society, vol. IV. ; Holzmuller, Einfuhrwng

in die Theorie der isogonalen Verwundtschaften, 1882.)

238. We now proceed to express the elliptic functions of the

imaginary argument vi by functions of a real argument v.

We know that cosm = cosh v, sint>i= isinhi', tanOT= *tanhi;;

and that the function (p or amh u, and its inverse function

u or amh"^^ = log(sec ^+ tan ^)= cosh" ^sec^, etc.,

connects the circular functions of <p, for which k=P, with the

hyperbolic functions of w in § 16, for which k=1; and then

cosh M = sec ^, sinh tt= tan 0, tanhu = sin^j tanh ^u= tan^^.

Now, if = amh yjri,

then cos (p cosh yjA= 1, or cos ^ cos i/^= 1,

a symmetrical relation, so that

i/f= amh <p/i
;

and sin ^ = tanh \}A= i tan \p;

cos (p = sech i/ri= sec yp-,

tan (p = sinh yp-i= i sin \p; etc.

Also d<p = i sech \[/-id\[r= i sec yp-dyp-,

L{(p, k) = J{\+ K^ta.n^\lr) = sec i/^ACV^, ^O.

so that _^=-^f±_.
O.E.P. R



258 THE DOUBLE PERIODICITY

If \(r= a.m{v, k),

then (p = am(w, k )

;

and Bn(v^,K) = ^—~-/, or ^sc(v,K), or ^in{v,K),
cn(v, K

)

cn(vi, k) = —~, >-,, or ncOu, k)
;

^ ' cq{v, k)

dn(m, k) = —7
Ts, or dcC-y, k ),

connecting the elliptic functions of imaginary argument vi and

modulus K with the elliptic functions of real argument v and

complementary modulus k.

Putting V= K', we notice that sn K'i, en K'i, and dn K'i are

infinite; and putting v='2,K', then

sn2Z''i= 0, cn2ir''i=-l, dn2Z'i=-l;
also sn4^''i= 0, cn4^'i= 1, dn4if'i= 1.

239. The Addition Theorems of § 116 may now be written

cn('u.+ yi)= (cnu en v— isn itdnusnt;dnv)-^i),

sn(u+ vi)= (snudnu+ icnudni( sn-y ca.v)-i-D,

dn(i(.+ vi) = (dn II en i> dn v— -i/c^sn ucxiU&nv)-T-B,

D = cn^y+/c%n% sn^v

;

remembering that the modulus of the elliptic functions of v

is K, while that of the functions of u is k.

Thus, putting v= K',

, ™.> .dnu
/ , r7-'-\ 1 J / , rj-'-N

-cnu
cn(u+ -H- ^)= -^ , sn(u^-iL^) = , Amvb-\-K %)=-%— ;^ ' /csnu ^ ^ /csnu ^ ' snu

so that, putting u= K,

<in{K+ K'i) = - i^'lK, sn{K+K'i) = l//c, dn(iir

+

K'i)= 0.

Writing G, S, D for en 2w,, sn 2tt, du 2u, then (§ 123)

^^ ^^+ ^^^^=-
l + dn(2u+Z-ir^ ^SUgr-

^^-^^

Generally, when m and % denote any integers, we find that

cn(u+2mK+ 2nK'i) = ( - l)'"+»cn u,

sn{u+2mK+ 2nK'i) = ( — 1
)»» sn tt,

dii{u+ 2mK+2nK'i) = {-l)'^ dnu;

«o that 4<K and 2K'i are the periods of sn u,

2K and 4Z'''i are the periods of dn u

;

the periods of cnu being 2(K+K'i) and 2{K—K'i).
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In § 164, we may now write

%+ Ug+ Wj= 4!mK+ 4^nK'i

;

or in the notation of the Theory of Numbers,

Ui^+ u^+ u^ = (mod. 4iK, ^K'i).

240. A combination of the transformations of §§ 29 and 238,

to the reciprocal and to the complementary modulus, gives

1 1 _ cn(/c'vi, IkIk)
cn(OT, k)=

sn(TO, k) =

cu{v, k) dn(K:'i;, l//c') dn()c'fi, IkIk)

isn{v, k) isn(K'v, 1/k') sn(/c'OT, i/c//c')

cu(v, k') K'dn{K'v, 1/k') /c'dn(K-'w, iK/zr')

, , . , dn(u, k') cMk'v, I Ik') 1

cu{v,k) dn(/ci', I/k) dn{KVi, iKJK)

Thus cn(K'M, iff/zc')= cd(tt, K)= sn(K— u, k),

or am(/c''U., iKJK) = ^Tr— a,m{K— u, k) ;

as is otherwise evident, when we notice that, if

(l-K^cosV) ^4' = -' I (l+^sinV) til/.,

so that i/.= am(K'tt, !«:/«'),

then iT- ii = /(l - k^cos^)"*^^ = /" (1 " /c^sinV)"*<^0,

or <() = eLin(K—u, k),

provided \}r= ^Tr—(p.

241. As an application, take the values of v^^ and Ug in § 210

;

T „ l+cos/3 , cZ— cosa „ d + 1

^ 1+cosa 1 + cosa ^ 1 + cosa

, „ 1 — cos/3 „ d— cosa
5,

cZ — 1 .

^ 1— cosa 1— cosa 1 — cos a

so that, with v^= pK'i, v^ = K+qK'i, where p and q are real

proper fractions (§ 56), then

1 — cos a _ sn^iij _ sn'^pK'i dn^qK'i

l + cosa" .sn^Ug cn^qK'i

1 — cos j8_ sn^-y^ dn^Vg_ K%n^pK'i
l+cosyS"~ sn^t^g dn^t;! dn^^^'i cn^giT'i

d— 1_ sn^Vj cn^i)2_ K.'hn^pK'i sn^qK'i

d+\.~ sn^y2
°'^^''^i'~

en^pK'i cn^qK'i
'
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Thence, expressed in a real form,

1 — cos a_ sn^fK'dju^qK'

1+cosa cn^^^'

or (§ 135) t&-Q.la = Unl[&m{{'p+ q)K',K}+a,m{{jp-q)K',K')'\,

a= am{(^+ 5)Z',/c'}+am{(2)-2)Z',/c'}.

Also rs 29^
'i-~cos^_ K'hn^vK'cn^qK'

^uHfK'K', l/K')AnHqK'K', l/Q
cnHpK'K', I/k')

so that ^= a,m{{p+qyK', 1/k'}+am{ (p

-

q)K'K', I/k'}.

And
^Jl

= ic^s,rv^pK'sn\K'

sn^ipK', K)dnmi-q)iK'-K, k}~
cn\ifK', k)

or d= coa[&m[{p+ q-l)iK'+ K, K]+a.m.{{p-q+l)iK'-K, k)\

In the Spherical Pendulum, (??'=0; and therefore (§210)

1 — cos a 1 — cos /3 (^— 1 _ 1

.

1+cosa l + coSj8 d+\
i ci— 1 TO o Tr- , rr/ snOjK''cn75-K''dn«^'

a+

1

-^ -' snpK en git an qK
or sn(p— g)^'= snp^'en g^'dn qK'.

Thence

sn(g+p)ir' o cn(g+j3)ir- dnfg+ p)ir;

sniq-p)K"
''°^^~ cn{q-p)K"

'^°^''~
dn{q-p)K'

242. With Jacobi's notation of § 189, the expression for ii/r

in § 210 becomes

. , /cnudnVj
,
cn^dn-WoX , „, x , tt/ \

i\Zr= (
^ J -\ ? ? lu+ 11(14., Vi)+ n('it, v„)

= ('55^1^1+z^ +£iL3^2+2t, V+ Aioa
e(^--i--i)e(u-^,)

.

\ snvi ^ snvg V ^ = 6(u+'yi)e(u+ 1^2)

'

and now, if we divide \(/- into its secular and periodic part,

in the form ^ = '^u/K+yl/,

then '5' is called the apsidal angle, in the motion of the Top or

of the Spherical Pendulum, as seen illustrated for instance in a

Giant Stride ; and

''^-\
snt^i

+^"^1+
sn^-2 +^''V^^*^°^e(^+i;i)e(ir+^2)'

which must now be expressed in a real form.
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From § 172,

iZ(vi, K) = U{&D.hi-i;/K)dvi

K J GVP-{V, K

)

= ^v— v+E&m(v, k) (§ 185)K en D

(E E' _ \ , _, ,, sn V dn v
-(^+%-l)v+Z{v, k')--

ttv , „, ,. sn'wdnv

en V

cni)

by means of Legendre's relation of § 171.

Thus, with Vj^=pK'i,

Yen^^^dn. ; ^ cr.pK'dnpK'

Again, by (2)*, § 186, sinee ZK^O,

Z(K+ u) =Zu- K^sn u sn{K+u)

;

therefore, with v^= K+qK'i,

Also, if p and q are proper fractions, the logarithmic term

of i'^ vanishes (§ 264) ; so that, finally,

|=2i(p+,)+z(p^', .')+z(?^'. ^')+'-^^^-

In the Spherical Pendulum,

en pK'dxi pK'/sn pK' = /c'^sn p^^'sn qK'sn(p — q)K'

= ZqK'+Z(p- g)ir'- Zp^'

;

so that '^=^{p+ q)+ ^'Z{qK',K')+Z{{p-q)K',K'}.

With the Weierstrass notation, taking ii in equation (8)

of § 208 between the limits cog and w-^+ w^, we find (§ 278)

i^= (a+ 6)ftOi- (^a

+

^h)„3^,

where a=pw^, h= wi+ qw^.

In small oscillations near the lowest position, p and k are

very nearly unity, while q and k are small.
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The Geometry of the Cartesian Oval.

243. Denote the angles POO', PO'O, P0"0 in fig. 26 by

6, 6', 6" respectively ; then with as origin,

x+ yi= 01^10, x— yi= cn^w';

i tanW =^5/(^±^irV(^Zl^
J{x+ y^)+ J(x-y^)

_cn|w— en|w'_ j/l—cnu 1— cnm\
~ cn^w+cn^'w'~\\l+ cnu l +cnw'

or, in a real form, with modulus k' for the functions of v,

._ //I— cnu 1 — cniiNsn^udn Ju snl-'ydn^t'^

""vVl+cntj, 1 +cnw cn|w cn^'W

. cnu+cnt> . ^ snusni)
008 = 7— , sin0=^

1 + en u en ii' 1 + en u en v

With 0" as origin,

k\x+ yi)= dn^lto

;

and, similarly,

^,_dn|w— dn|ty'_ //I — dnu 1 — dnm\
itan^y

-dnjw+ dnity'~'V\l + dnu '

1 +dnW'

ifl"_ lf^—<iTiu ^r\v— cnv\_K'^sn^ucn^%i, sn|w
^ 'V\l+dn^t. dnt;+ cni>/ dn |w cnj^dnji)'

.„ en -y+ dn u dn t) . .,, /c^sn u sn -y

cos 6 = T n . sm 6 = -

dn-y+ dnucu'?;' dn u+dn ticni;'

With 0' as origin, and

x+yi= sn^w,

then I tan i0 =—f f—,.

sn^w+sn^w
To reduce this to a real form, similar to the above, we require

two new formulas, not included in Jacobi's list (§ 137), but easily

derivable from it, namely,

{dn(u+v)±cu(u+ v)}{dn(u— v)±cn(u— v)}= (c-^d^ ± c^d-J'/D,

{dn(u+v)±cn(u+ v)}{dn(u— y) + cn(u— ^))} = /c'^(Sl + S2)V-D•

Now, with ^w and ^w' for u and v, and u and vi for u+v
and u— v,

1/1/ Ifdnu+ cnu dnm— cnm\
\\anw— cniA dnOT+cnw/

in'_ Ifdnu+cnu 1 — dny\ _cn|udn Ju sn^vcn Jf
^ WdntA— cnu 1 +dnw sn|M- dn^v '

^, —cnu+dnudnv . ^,
cos = —

=

i—, sin 6 =-
dnu— cnudn?;' dnu— cnudnv'
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244). Again, denoting the angles which P subtends at O'O",

0"0, 00' by ^, <p',
(f,"

respectively, so that

<p= -,r-6'-e", 0'= 0-0", 4>" = '7r-6-6';

then we shall find

, J
_sn^udnju cn|t; _ 1/1— cnu l + cnt;\

^ en |w sn^vdnl^ ~ vVl+cuu l — cnvJ'

, 1 ,/_ (c'sn^u /c'sn |i) en Jv_ Udnu— cnu 1 — dni;\
™ cn|udn|u dn Jv Wdnu+cnu l+dnvJ'

,
J „_ sn Ju en Ju en Iv dn I?; _ j/l — dnu dn^u+ cn-yN
'^ dn|u sn^v ~\\l+dnu dn-y— cnw'

cnw— cnv . snusn-y
cos A =

,
sm (A= = ,

^ i — en tt en I) ^ 1 — en w en i^

, en w + dn tt dn t; . , /c'^sn usnv
cos = -j

; J—, sm = J ; 5—

.

^ dnu+ cnudnii ^ dnu+ cn u dnii

„ — cnv+ dnudn-y . „ jc^snusn-y
cos =—i

i , sin<i =T ^^ dnv— dnuen'y ^ dn -y — dn u en y

Similarly, denoting by to, to', w" the angles which the normal

at P to the oval along which v is constant makes with PO,

PO', PO", we shall find

, sn u en u , sn u dn v , „ sn u
tan ft)

=
, tan &>= -5 , tan w = -

sn V dn it sn I) en w sn t;

Drawing the three circles through OTO', 0"P0, OPO', and

denoting the points in which the normal at P meets them

again by Q, Q', Q", we shall obtain similar simple expressions

for PQ, OQ, ... (Williamson, Biff, and Int. Calculus).

245. The two ovals defined by v and 2K'— v form a complete

curve ; and so also the ovals defined by u and 2K—u.
Denoting by P, P', Q, Q' the four corresponding points

defined by (u, v), (u, 2K'-v}, (2K-u, v), {2K-u, 2K'-v);

and denoting by p, p', q, g' their consecutive positions when

u receives a small increment du, then

P-p= y/Jdu= Ky/{rr'r")du

_ en vid.Tiu+ en udnvi //en vi— en u\j.,

dnw+dnu vVcnm+ cuw/

_dntt+ cnudn'y //l — en w- en v\ ,

dn I) + dn u en i)\ Vl+ en It en w
and changing u into 2K—u, v into 2K'— v,

Q, ,_dnu—cnudnv //I — cnucntiX ,

dn^y — dn ttcn'y'V Vl+cnucnt;/
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Then P^+QY=2 jEiidnj^ /flr^E^i^^^W

= -5—i,— */(! — 2 en V cos 6+cn^v)dd

;

so that the sum of the arcs described by P and Q' is expressible

as an elliptic arc.

. . „ /-,/ / 2 K^cnu—K^cuv //I — cnucn'uN 7

Again Pp- Qq'= -^ ^~ J I r- jdu,

which is expressible in the form

|^^(1 - 2 dn V cos 6'+dD^v)dd'

2
+^—^^/Cdn^f+ 2 en V dn -y cos 0"+ cv?v)d<h"

;

K sn 1)

so that the difference of the arcs described by P and Q' is

expressible by the sum of two elliptic arcs ; and thus the arc

of the Cartesian Oval described by P is given by means of

three elliptic arcs, which is Genocchi's Theorem (Annali di

Matematica, VI., 1864 ; Mr. S. Roberts, Proc. L. M. S., III., V.).

246. Let us examine the analytical properties and physical

applications of the functions

log en ^w, log sn ^w, log dn ^w.

Denoting logcn|iy by <pi+i'^i, when resolved into its real

and imaginary part, then

0j+iT^^= I log en ^w en ^w'+^ log en Iwjcn \w'

, , en Jw dn ^w en ^w'dn \w' . _ , .en Aw'— en \w= h log i j ^ ; ; \- 1 tan t ; y— ;° dn^^(;dn^^(; cn^w +cnfw
,, en'^-y dnu+dnmcnw

, .^ ,. l/l — cnu l — cnvi\
= i log 1 r—

-^
\-i tan-^A / ( :j-^ ^j-, •

)•° dnw+ dnu \\l + cnu 1 + cnw/
as in § 236, by means of formulas (3), (20), (28) of § 137 ; and

now expressing the elliptic functions of vi, to modulus k, in

terms of functions of v, to modulus k' understood ; then

,, dn^+ cnttdn-y l/l — cnu 1 — envN
^i= ^^°^dn^+ dnucnt;' ^1= *^"" VVl+^i^'I+^^/
Denoting logsn ^w by <p^+i\jr^, then

02

+

i^2— i ^og ^"^ i^ ^° i"^'+ i log sii ^w/sn \w'

_,, sn |iy dn I'M; sn Itu'dn |w' . _^.sa.\w'—b\i\w
° dn^wdnjiy' sn|w'+sn|iy

,, cnw— cnw, .^ ,. //dnu-!-cn« dnm— cnmN= 5 log -5 r-—

i

h*tan-HA/(-i -, r- :)°dniii+dnu VVdnu— enw dnm+cnw
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= ^l"g
H ^-^r"""" +itan-\/(f ^+^°^ .li:4^Y

° anv+ dnucnv ^Vdnu-cnw 1+dui;/

Similarly', denoting logdn ^w by ^g+ii/'s. ifc

., cnwdntt+ cnttdnOT
, .^ ,. //1-duu l-driwX

cnw+cnw AfVl+dnu 1+ dnm/
,, dnu+cnudav .^ ,

//I—dnu dni>— cni!\

l+ cniicnv ^Vl+dnu dn^y+ cn-y/

By (20), (21), (22), (23) of § 137, we prove, in a similar

manner.

logVl = |log -. h^tan-i-
en ^t; •" ^ cnvt—enu da i)i sn u

= tanh-i(cn u en ti) + i tan"^(dn u sn ?;/sn u dn v),

logwy—^ ~ ^^^^ ~K^^ '^ cn -y/dn -y) — i tan " ^(cn u sn i;/sn w),

, j/'Aaw+CBw\_
^V Vdn w— cn'w)~

247. These conjugate functions and yp- of the complex

u+mare capable of representing the solution of various physi-

cal problems concerning a plane in which u and v are taken as

rectangular co-ordinates, since they satisfy the conditions

du dv dv du

Here u and v are not restricted to be rectangular co-ordinates,

but they may represent the conjugate functions of eonfocal

conies or Cartesian Ovals, as in §§ 179, 236, or of any orthogonal

system, which divides up a plane into elementary squares or

rectangles, as on a map or chart.

As in § -54, we take a period rectangle OABC, bounded by

tt= 0, u=2K, v= 0, v= 2K' ; and now, as the end of the vector

w or u+vi, drawn from 0, travels round the boundary OABG
of this period rectangle, the vector w assumes the values

2tK(Sl <t<l); 2K+ 2t'K'i{0 <t'<l);

2tK+2K'i(l >t>0); 2t'K'i(l >t'> 0).

When the sides of the period rectangle are a and b, we

replace u and v by 2Kx/a and 2K'y/b, where K'/K=b/a.
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Taking the function logcn Jiw or ^j+ i^'K ^^^^ ^''^'^ ^ *° -^'

i/^i= ; from A to 5, V'l= i'^ 5
^''O'^ -^ t° ^> '^1= 1'^; ^°^ fro'^

Cto 0, l/ri= 0.

At J., where tt = 2^, u= 0, then 0j= — oo ; and at C, where

u= 0, V= 2ir, ^1 = 00

.

The functions ^j and i/r^ therefore satisfy the conditions

required of the potential and stream function, due to electrodes

at A and C, of the plane motion of electricity or fluid, when

bounded by the rectangle OABG.
The function i/c^ will also represent the stationary tempera-

ture at any point of the rectangle, when the sides OA, OG are

maintained at temperature zero, and the sides AB, BG at

temperature ^tt.

When the period rectangle is a square, or K=K', then

^^= ^TT when u+ v= '2,K, or along the diagonal AG; we thus

obtain the permanent temperature inside an isosceles rect-

angular prism, when the base is maintained at one constant

temperature, and the sides at another.

Similar considerations will show that the function logsn|w

or ^2+^V'2 ^^^1 Si'^^ ^^ streaming motion in the same period

rectangle, due to a source at 0, and an equal sink at G.

The function -yp-^ is now zero along OA, AB, BG, and Itt along

OG ; and -i/r^ will therefore represent the stationary temperature

when OG is maintained at temperature Jtt, while the other

sides are maintained at zero temperature.

A superposition of four such cases will give the permanent

temperature when the sides of the period rectangle are main-

tained at any four arbitrary constant temperatures. (F. Purser,

Messenger of Mathematics, VI., p. 137.)

Examples.
1. Solve the equation

2. .Investigate the curves given by

dzldw= {\-z^f.

3. Prove that the system of orthogonal curves given by

^+iri= sn{u-\-vi)

are the stereographic projections of a system of confocal sphero-

conics (W. Burnside, Messenger of Mathematics, XX.).



OF THE ELLIPTIC FUNCTIONS. ' 267

Prove that the stereographic projection of the points

x=Rsnudnv, 2/= jB dn w sn -v, z= Rcjiu cnv,

on the sphere x^+y^+z^= R^,

whose latitude and longitude are 6, 0, are given by

i+ r,i= 2R tan(i,r- |0)(cos + ^ sin 0) =R l\^^^^^^±^.
Prove also that

4. Discuss the physical interpretation of

A+i\I/'= tan"^^j ^ h^tan"^ >

^ ^ dn%dnv vccntt

and determine the single function from which it is derived

;

, ~ ,,•, i.
, . Kcnu i/csnusnv

also 01 0+tvr= tanh-^T ;— +^tan-l
^ ^ dn 71 dn t; en i)

Interpret these expressions when
x+ yi= c sin(it+ vi).

5. Prove that, if x+ yi= snw,

then <j>+i\p-= -{Zw +oj^j

gives the plane motion of liquid streaming past two obstacles

given by x= \ and 1/k, a;=— 1 and — 1/k (W. Burnside,

Messenger, XX.).

The Double Periodicity of Weierstrass's Functions.

248. A procedure similar to that of § 236 will show that the

Cartesian Ovals of fig. 26 are also the representation of the

conjugate functions of the system z= pw, obtained from the

definition of § 50,

or dz/dw= p'w= — ^{4!S?— g^z— g^),

where 4!Z^-g2Z-g3= 4!{z~e{)(z-e2){z-e^)

;

and z= e^^, e^, e^ define the three foci.

According to § 51,

pw-es= («! - e3)nsV(ei - 63)^= (e^ - e^ sn^l^/ie^ - e^yw+K'i},

pw-e^= {e^ - e3)dsV(^i - ^3)^= (^2 - e.s)cn^ x/(«i - ^a)"^

+

K'i}

,

pw-ej^= (ej - 63) cs2^(ei - e^yv= - (e^ - e3)dn2{ ^(e^ - e^)w+ K'i},

by § 239 ; thus identifying these results with those of § 236.

?(;=,
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With the notation of § 202,

/o-tWY /a-oWV (ar,w\^

.

^'"-'H-^)' ^^-^^=V^j' ^^-^B=(^j'

and denoting the focal distances by r^, r^, r^, and u— vi hy w',

249. To express these focal distances in a real form, as in §236,

we employ the Addition Theorem (K) of § 200, written

(r(tt+ v)(T{yu— v)= a-% (7^v{{^v— ea)— (pu— Ca)}

= a^U(7a^V-0-a''UCT^V (M)

Again, from §154, p{u+ v) — ea is a perfect square; and we

may write x==pu, y = ^v, s= f{u+v),

N—^u—Ca, D= fih—e^.fu—ey;

J(pu -eg.pv-eis.pv- ey)- Jjfu-e^ . pu-ey . ^v-eg)

and now
o-a(u+ v)cr{u— v) = ^{p(u+ v)— ea}cr^(r'v(pv— fu)

= a-u cr^u, a-pV cr^v— a^u a-^u a-^v crv,... (0)

and changing the sign of v,

(r{u+ v)a-giu— v) = au a-gU cr^V ayV+ a-M cTyU a-gV crV. . . .(P)

Again, by multiplication with (N) and reduction,

<Tg(u+ v)o-^{u-v)

(r{u+ v) aiu— v)

_ y/C^^-gg pu-e^ .<pv-eg. pv~ep)- (eg- e^)J{fu- ey . fv-ey)

or

o-a(^

+

'")^^{'^ -v)= a-gU a-pU a-gV a^v - (e„- e^)(TU o-^u av a-^v, (Q)

o-a(^- '^y^i'^+ v) = (TgU (T^u (TgV a-^v + (e^- e^au ayU av <TyV. (R)

Similarly,

<Tg{u+ v)aj,u -v) ^ {fu- e^){pv- ej- (e^- e^)(e„- e^)
^

<t{u+v) a(u— v) pv— pu
or

<7giu+ v)a-g{u-v) = 0-/U o->- (e„ - e^)(e^- e^)o-2u a-^v (S)

(Schwarz, Mliptische Functionen, p. 51.)
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Now, from these equations (0), (P), (Q), (R), with

w or l(u+ vi) for u, and w' or ^(u— vi) for v,

_ cr{W a-^W g-^m'a-^i}'_ _/, _ s(T{tL tr^vi+ a^U a-{vi

^ (TtVa-^Wcrw'a-^w' ^ ^ ar^u (T{vi — cr-jU asvi'

cr{W a-^w (r-.'w'a-oW' . .a-.u o",W+ (7ott a-,vi
or 7*1 = — — — = (6 6 ) ^ ** ^ ^

a-w iTgW (j-iv'(y^iv' ^ ^ cr{iJja:^vi— cr^Ua{vi'

with similar equations for r^ and t^ ; and thence the vectorial

equations of the Cartesian Ovals analogous to those of § 236

r^a^vi— r^cr^vi= — (eg— e^a-{oiy

These vectorial equations again are the geometrical inter-

pretation of the formula, immediately deducible from (N),

a-^W cr^iu'a-yiw+ w')- a^W <t^(T^W+w)
= («^- '^^(^ aw'a-J^W+ w') (T)

Making m^= — 1 in the homogeneity equations of § 196, gives

<P{'"i ; 9'2. 9s) =- fiy, 92' -9s),
_

the equivalent of the equations of § 238, by which a change is

made to a real argument and complementary modulus ; while

^{vi; 92' 9s)= - '>'l{'"' 9i' -9s)'

o-(vi; g^, g^)= i<T{v; g^, -g^),

arj.vi; g2'9s)= '^ai'"' 92' -9s)-

250. When a point has made a complete circuit of one of the

ovals, enclosing a pair of foci, defined by e^ and e^, or e^ and e^,

z will have regained its original value, but w will have increased

or diminished by 2ooi or 203^, defined as in §§ 51, 52 by the

rectilinear integrals

a,^=rdslJS=nd8lJ8,
1 a

so that 2coi, 2wg are the 'periods of the function ^u, and

p{u+ 2mwj

+

2nw^) = fw.

To fix the ideas we have supposed the circuit of two poles

of the integral made on the enclosing branch of a Cartesian

Oval, but the result will be the same whatever be the curve,

provided it makes the same number and nature of circuits.

Now, in § 165, we can have

u+v+w—2mwi+ 2na)g = (mod.2ft)p Stog).
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251. In § 54 it has been shown how, as the vi'^ctor of the

argument w traces out the contour of the period reOtangle, pw
assumes all real values : and pw may be made to ass^ume any

arbitrary complex value at a point in the interior, of the

rectangle, given by a determinate vector ito^ + t'w^.

It is convenient to put ft)i+ ft)3= —w^, so that

ft)i+ w2+«"3= 0. with 6^+ 6^+ 6^= ;

and now pw-^ = e^, jatoj= e^, pw^= e^

;

while p'ooi= p'u>^= p'ws= 0.

The equations of § 54 show that

6>(tA±ft)i)— 6,=-^ ^^-^ ^
^^ ^ fu— e-^

p{u±oo^)-es=

<pu— e^

Co ^^ C-i • Co ^^

equations analogous to those of § 57, in Jacobi's notation.

Thus, from ex. 9, p. 174,

4j3 2u= J3U

+

(p{u+w^+ (p{'w+ w^+ fin,+ w^).

With negative discriminant, as in § 62, we take e'g as real,

and fip eg imaginary; also ai^ = ^{w2+o}'^, w^= ^{oo^,— u>'
^

',
and

fla^ = e^, ^0)3= fig, pw^= <pw\= 6^.

252. A great advantage of the Weierstrassian notation (at

first rather baffling to one accustomed to the methods of

Legendre and Jacobi) is that the dimensions of the elliptic

integral are left arbitrary, and can be changed by an applica-

tion of the Principle of Homogeneity of § 196.

When the canonical elliptic integral of § 50 is normalized

in Klein's manner (§ 196) by multiplying by A^^, then

r !\^^ds _ r da-

JJi^s^-g^s-g^yJJ{^a^- 720- -yg)'

where s= AV. 5^3= A ^2. ^'3= ^*73;

and now y^— '^y^= 1,

so that the new discriminant is unity, and

'^=72'. ^-l = 27y.3

If CTj, CTg denote the real and imaginary half periods of the

normalized integral, then

CTi= a)iA* CTg= a)3A".
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The general elliptic integral, written with homogeneous

variables as in§ 155, is also normalized by Klein by multiply-

ing by the twelfth root of the discriminant of the corresponding

quartic, and its half periods are now cr^ and ^^.

If we normalize, for instance, the canonical integral (11) of

§ 38, written with homogeneous variables x^, x^, in the form

/ \ 1 2 * 2 1 * 2 '^*^i/ ^flvoCl'lC-i "^ X-tOtt^l/ojj

then the invariants g^, g^, and the discriminant A of the quartic

being the expressions given in § 68, therefore

Now the half periods of integral (11), § 38, being 2K, 2K'i,

vy^= 2K^ilKK'), CT3=2Z'i4/(i^K')-

We are thereby enabled to change from Weierstrass's coj and

cog to Jacobi's K and K', and to utilize the numerical results of

Legendre's Tables. (Klein, Math. Ann., XIV., p. 118.)

When the discriminant A is negative, we normalize by

multiplying by ( — A)^, and replace Wj and Wg by tOg and Wg'

(§62); but now the new discriminant y^—'^'iys^ —1, and

»,(- A)^

=

2K^{W), u>\{

-

A^) = 2K'i:j{\KK) (§g 47, 58).

For instance, if c^2= in § 50, {-^.)^-= ^Z^g^ ; and in § 58,

J=0, or 2k/=i 24/(i/c/) = 4/2; and now

while (§ 47) cojcoj= K'ilK= i^S.

Confooal Quadric Surfaces.

253. The symmetry and elegance of the Weierstrass notation

is well exhibited in the physical applications relating to con-

focal surfaces of the second degree.

The equation of any one of a system of confocal quadrics

1 • x^ , y^ , z^ ^

we put

a2-f-X = m^(^tt— ej, b^+ \ = 'm%^u— e2), c-+ X=m\pu— eg);

and now the integral

d\ 2u

JsJ
With fij > (jj > gg, we must take a'^<W< c^.
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Three confocals can be drawn through any point x, y, z,

an ellipsoid, a hyperboloid of one sheet, and a hyperboloid of two

sheets.

Supposing the ellipsoid to be defined by X or u, and the

hyperboloid of one sheet in a similar manner by ft. or v, and

the hyperboloid of two sheets by v or ly ; then in going round

the period rectangle of § 54,

(i.) u =p(jo, QO>.fu> gj, for the ellipsoids ; starting with p=
for the infinite sphere, and ending with p= l for the inside

of focal ellipse;

(ii.) -y= a)i+ g'«3, e-^><pv>e^, for the hyperboloids of one sheet;

starting with g'= from the focal ellipse, and ending with

5= 1 for the focal hyperbola

;

(iii.) 'W= rcoi+ ft)3, e^>pw>e^, for the hyperboloids of two

sheets ; starting with q = l from the focal hyperbola, and ending

with 2= for the outside of the focal ellipse
;

(iv.) the fourth side of the period rectangle gives imaginary

surfaces.

254. Replacing W— a? and (P'— a^ by /3^ and y^, so that

are the equations of the focal ellipse of the confocal system, we
should have to put, with Jacobi's notation,

a2+ X= y^Qs\u,K), 6HX= yMs2(tt,K), c^-\-\= y^^^i^u,^);

a^+v=—y^dn^{w,K), ¥+v=-y^cn\w,K), c^+v=K^yhn'^(w,K)\

where f ="2
a- '^ -"i 9'

and now u, v, w will be Lamp's paraTneters, as given in Max-

well's Electricity and Magnetism, I., chap. X.

By solution of the three equations of the confocal quadrics,

^_ a^+\.a^+ fi.a^+ v ,_6HX 6H^ • 6Hi^
^ ' a^-b^.a^-c^ ' y 62-c2.62_£j2 '

c^—a^. (?— W
and thus x, y, z can be expressed as functions of u, v, w.

Employing the function s^ of § 203,

a;2= i
,

2/2
_ 2

^
^2_ 3

_

O-i ^~ 60 . 6-1 Co Co ~~ 60 * 6a ~~ C
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When 6^= 0^ the ellipsoids are oblate spheroids, and the

hyperboloids of two sheets degenerate into planes through Ox
;

and now the orthogonal system is given by

x^ y^+z^^, ..

cot% cec% '^

'

t^+t±t= y2 (ii.)

tanh^i; sech^v '
'

^J ^ =0; (iii.)

intersecting in the point

a3= y cotwtanh'i;,

2/= y cec u sech v cos w,

z= y cec V, sech v sin w.

When b'^= a^, the ellipsoids are prolate spheroids, and the

hyperboloids of one sheet are planes through Oz; now the

orthogonal system is given by

x^+y'^ z^

cech^it coth^u
= y^ (iv.)

- --0-+ ^-=0, (v.)

_ x'+y' z^
(vi.)

sech^iy tanh^ic; '^
'

intersecting in the point

x= y cech u sin v sech w,

y = y cech u cos v sech w,

z= y coth u tanh w.

The degenerate case of confocal paraboloids, where the centre

is at an infinite distance, may be written

y^ z^ . *—rn—I

—

1 9, = 8a(a cosh u—x), (vii.)
cosh'' Jw smh^'^w ^

' ^

ifi z^—^T „, =%a{a cosii— a?), (vin.)
cos^^v sin'^Jv

^

i9i-H r^T— = 8a(acosh'u;+a;) (ix.)

intersecting in the point

X= a(cosh u+ cos v— cosh w),

y= ia cosh |u cos ^v sinh ^iv,

z= ^a sinh \u sin \v cosh ^w.

{Proc. Lond. Math. Society, XIX.)
Q.E.F. s
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255. We may take u, v, w as Larad's thermometric para-

meters, and now Laplace's equation becomes (Maxwell, Elec-

tricity, I., chap. X.)

Thus <p =Au+Bv+ Cw-\-I>(u^+ v^+ w^)

+ 2Evw+2Fw'w+2Ouv+Huvw
is a particular solution of this equation; for instance, the

electiic potential between two confocal ellipsoids, defined by

Ui and u,2, maintained at potentials Uj^ and U^, is given by

U= { U^(u - u^)+ U^{u^- u)}/iui- Ug).

When the solution ^ is equal to UVW, the product of three

functions, U a function of u only, F of v, and W oi w only,

then Laplace's equation becomes

so that we may put

Id^U ^ ,
, I dW

,
, 1 d'W

,
,

three equations of Lamp's form (§ 204), when g= n{n+l).

256. The complete solution of Lamp's equation was first

obtained by Hermite, in the form

U=CF{u) + C'F(-u).

Denoting by Y the product f/^ U^ of U-^ and CTg, or F{u) and

.F(—"tt), two particular solutions of the general linear differential

equation of the second order, in its canonical form

Udu''~ '

where Z is some function of u, and denoting differentiation

with respect to u by accents, then

or Y"-2IY=2U^U^-
and F'"- 2/F'- 21'F= 2 U{U^+2 U{U^'

= 2I{UJI^+U{U^)= 2IT,

or F"'-4/F'-2/'F=0,
the general solution of which linear differential equation is
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A first integral of this differentia] equation is

where is a constant, given by

the integral of U^U{- U{ U^= 0.

In Lamp's differential equation

I=n(n+l)^u+h

;

and now, changing to x= pu as independent variable,

d?Y d?Y

-4{(r!,2+«-3)x+/i}^ -2i?,(%+ l)F=0,

and this equation for Fhas, as a particular solution, a rational

integral function of x or pu, of the mth order, which we may

write F=II(ptt— jaa),

and /i = (2%— l)2j3a.

Now, by logarithmic differentiation,

while ^_^'=^=n^-^.
Brioschi shows (Gomptes Rendus, XCII.) that, when resolved

into partial fractions, we may put

n(j3u— fa) "^fu— pa
provided that

2p'a=0, 2fap'a= 0, I,(fa)Ya=0, .... S(pa)»-V«= 0,

and 2(g)a)" -V'o-= C*-

and, integrating,

Fii, or JJ^=n""^^"*"^^
exp( - ufa) = n^(tt, a)

;

while U^ or F( — u) is obtained by changing the sign of u or a.
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257. Hermite shows {Gomptes Rendus, 1877) that the func-

tion F(u) may be otherwise expressed by

and ^u, called the siTnple element, is of the form e^^<p{u, w),

(}>{u, ft)) being a solution for ih= 1 and h= fw (§ 204).

To obtain the coefficients J.^, A^, ... in F{u), we suppose

<t>u or e^"(p(u, ft)), Fu, pu expanded in the neighbourhood of

u= (§ 19.5), in the form (Halphen, F. E. I., chap. VII.)

e^'',^(u,«,) = ~-|-X+(X2_j3„)|+(X3_3x^„_^'„)|J+...,

Substituting in Lamp's differential equation

F"u= {in,in+V)fu+li}Fu,

we obtain, by equating coefficients,

_ in-\){n-^)
^i~ 2(2n-l) "'

_ (^-l)(,^-2)(7l-3)(Tt-4) f 7l(«+l)(271-l) 1

2-
8(27i-l)(2M-3) r 10 ^2/.

••••

On comparing the two forms of the solution Fu, we find that

ft)= 2a, and \ = ^w— 'Z^a.

Thus, for instance, when % = 2, we find, as in § 209,

wfr..\
o-(u+ a)o-(u+ 6) . . „.

d a{u+a+ h) . . „,

When'M = 3,

Fu= (l)(u, a-^)(j>{u, a2)<p(u, a^)

d^

where a^+ ttg+ ag= ft),

^ayaj^+ fa^f'a^+ ^agS^'ag = 0,

fft)-fai-fa2-fa3= X.

This fails when g^^^, and ai= i', c(2= '«'y) a^^wH ; but now

(§229) Fv,= Wv-f''w).



CHAPTER IX.

THE RESOLUTION OF THE ELLIPTIC FUNCTIONS
INTO FACTORS AND SERIES.

258. The well-known expressions for the circular and hyper-

bolic functions in the form of finite and infinite products

(Chrystal, Algebra, II., p. 322; Hobson, Trigonometry, chap.

XVII.) have their analogues for the Elliptic Functions, as laid

down by Abel in Crelle, 2 and 3.

Granting the possibility of the resolution into linear factors,

the individual factors are readily inferred from a consideration

of the zeroes and infinities of the function.

Denote 2mK+2nK'i by Q,

where m and n denote any integers, positive or negative,

denote also Q+K or {2m+ l)K+ 2nK'ihyQ^,

Q+K+K'i or (2m+ l)K+(2n+l)K'i by Q^,

and Q+ K'i or 2mK+ {In+ l)K'i by 0,^

Then considering the function

sn u,

the zeroes are given by u = Q, and the infinities by ^= 0,^

(§ 239) ; and thus we infer that, if sn u can be resolved into

a convergent product of an infinite number of linear factors,

the form is

m= t» n = a> / ni \

^ n' n'(i-^)
&nu=A "'=-°°"=-°^ ^ (1)m= <Xl 71= 00 / fit \

the accents in the numerator denoting that the simultaneous

zero values of m and n are excluded.
277
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Similarly, ciiw=5nn(l- J)/i), (2)

dDw=(7nn(l-j)/l> (3)

the zeroes of cnu being given by u= Qi, and the zeroes of

dnu by u= 02, while the infinities are given as before by

u= Q^; D denoting the denominator in (1).

259. But now, in demonstrating the analytical equivalence

of the expressions on the two sides of equations (1), (2), (3), it

will fix the ideas if we employ a physical interpretation, such

as that given in § 247.

It was shown there that the real and imaginary part {norm

and amplitude) of

log sn w,

where 'w= u-'t-vi, will represent in the rectangle OABG the

potential and current function of the flow of electricity (or of

liquid, following the laws of electrical flow) from a positive

electrode at to a negative electrode at 0, ^tt amperes being

the strength of the current ; but here we take OA = K, 0G= K'
;

and u, V are the coordinates of any point in the rectangle.

The infinite series of electrodes, which are the optical images

by reflexion of these two electrodes at and C, will form a

system on an infinite conducting plane, such that, if the

strength of the current at each electrode is 27r amperes, the

resultant effect in the rectangle OABG will be the same as

before.

(Jochmann, Zeitschrift filr Mathematik, 18C5;

0. J. Lodge, Phil. Mag. 1876
; Q. J. M., XVII.)

Starting with a single electrode at 0, of current 27r amperes,

the potential and current function at any point whose vector

ia w or u+ vi are the norm and amplitude of logw ; and log w
may be called the vector function of the electrode at 0.

For an electrode at a point whose vector is c= a+ bi, the

vector function a.t z= x+ yi is log(2:— c),

which may be written

log{l -z/c),

disregarding the complex constant log(— c).
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The vector of edj optical image of in the sides of the

rectangle OABG being given by f}, the vector potential of the

corresponding electrode is log(l — w/fi); and the vector function

of the system of images of the positive electrode at will be

Similarly the vector function of the system of images of the

negative electrode at G will be

Hnn(.-5).
But these functions, considered separately, represent a

physical impossibility, and are analytically meaningless; their

difference, however,

.»g»mi-(i-^)/nn(i-^)

will represent the vector function of the whole system of posi-

tive and negative electrodes; and since this function satisfies

the requisite conditions inside the rectangle OABG as the

function log sn w, we are led to infer equation (1), with suitable

restrictions explained hereafter.

For log en w, the positive electrode is placed at A, the

negative electrode being still at G ; the vectors of the positive

electrode images are given by Qj ; and now equation (2) is

inferred ; while for log dn w, the positive electrode is placed

at B, and the vectors of its images are given by fig. ^^e

negative electrode being at G; and we infer equation (3).

When in the rectangle OABG we have OA = a, OG=b,
we take E'/E=b/a, and write K{xla)+ K'i{yjb) for u+vi,

X, y now denoting the coordinates of a point.

260. We now proceed to express these doubly infinite pro-

ducts of factors, corresponding to the different integral values

of m and n, by means of singly infinite factors for different

values of n; that is, we combine all the factors for one value

of n and the infinite series of values of m into a single ex-

pression; and here we employ the formulas for the trigono-

metrical functions expressed as infinite products.

Interpreted physically, we determine the vector function of

an infinite series of electrodes, equispaced on a straight line

parallel to OA.
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Deuoting the vectors of such a series of positive electrodes

by -Ima+nhi, the vector function is

™=a> / ^ nhiX
log n {z—'ima—nhi), or \og{z—nhi)'U!\\—^ );

and provided that (z— nbi)/2'ma is ultimately zero when m is

infinite, or that z/ma and n/m tend to the limit zero, we can

write this vector function (Cayley, Elliptic FvMctions, p. 300)

logsin \'7r{z— nhi)la, (4)

Resolved into its norm and amplitvAe, this vector function is

i log |[cosh{'7r(2/ — nb)/a} —cos ttx/o]

+ itan~i[tanh{|7r(2/ — ?i6)/a}cot(|7ra;/a)]. ...(5)

The amplitude or current function is therefore constant when

x={2m+ l)a ; and there is no fiow across these lines, provided

however, as is physically evident, we do not recede to such a

large distance from the origin that we are not justified in

taking Itzj^ma as zero.

261. We suppose that Oy passes through the centre of this

infinite series of electrodes, or that m reaches to equal infinite

positive and negative values ; but now, at a very large dis-

tance from 0, the electrodes on one side of a line, given by

x= &rri+ V)a, where m is a large number, will preponderate

over the electrodes on the other side, and the resultant efiect

will be a uniform normal flow a across this line, to counteract

which a term of the form — az or log e""" must be added to the

vector function.

The analytical equivalent of this physical effect is illustrated

by the theorem proved in Hobson's Trigonometry, p. 328, that,

when the integers p and q are made infinite in any given

ratio, then (j>z, the limit of the product

-(f)->«4
(«)

The infinite product 11(1 + c„a;) is convergent for all finite

values of x, if the series 2c„ is convergent ; as is evident on

expanding the logarithm of the product.
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But Weierstrass shows (Berlin Sitz., 1876) that the divergent

<l-!)(l-i)(l-i)...

can be made convergent if the exponential factor e'l"^ is

attached to the linear factor l—zjina; or, interpreted electri-

cally, if to the motion due to the electrode at ma, whose

vector function is log(l—z/ma), "we add a uniform streaming

motion parallel to the vector ma, given by log e^/™* or z/ma.

Now, denoting the harmonic series

l-i+ 2-i+ 3-i+...+p-^by V
^z= e^'p

-
'«'"/" sin(7r2/a) = [p/qfl'^smi-Trz/a),

since the limit of Sp— logp or Sq— log q is Euler's constant.

262. In a similar manner it is inferred that the vector

function of an infinite series of positive electrodes, whose

vectors are {2m+ \)a+ nbi,

m reaching to equal positive and negative infinite values, is

log cos |7r(2:-7i6i)/a= |log|[cosh{7r(2/-«&)/a} +cos(7ra;/a)]

+ i tan-i[tanli{|7r(2/-'«'?')/a}tan(^7rx/a)], (7)

having lines of equal amplitude given by a;= 2ma.

Therefore the vector function of a pair of lines of electrodes,

whose vectors are 2m,a+nhi, is

\og&\n{^Tr{z— nhi)ja}sui{\-K{z+ nhi)la}

= log ^{cosh(m7r6/a) — cos(x2:/a)}
;

or, corrected by the addition of a constant, which makes the

function vanish when z= 0, the vector function is

, cosh('n,7r&/a) — cos(7rz/a) _, 1 — 2q^cos (Trz/a) + g^"
^o^^^

cosh(%7r&/a)-l ~ ^^
(l-g»)2 '

^^^

where 2= 6"'^'/".

For a pair of lines of electrodes whose vectors are

(2m+l)a + nbi, the vector function is

log cos{^Tr(z— nbi)/a}cos{^Tr{z+ nbi)/a},

which may be replaced by

, cosh(n7r6/a)-l-cos(Tr2:/a.)_, 1 + 2g"cos(7rg/a.) + g^" .,

^^
cosh(w7r6/a)+ l ~ ^^

(l+rf ^

For the line of electrodes along OA, whose vectors are 2ma
or (2m+l)a, the vector function will be

log sin(|7r2:/a) or log cos(|7rz/a) (10)
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263. Under Cayley's restrictions, that m reaches to equal

positive and negative infinite values, and n also ; but that the

infinite values of n are infinitely small compared with the

infinite values of m (equivalent to taking the infinite array of

the images of the electrodes as contained in an infinite rect-

angle, of which the length in the direction OA is infinitely

greater than the breadth in the direction OB), we can now

replace the doubly infinite products in (1), (2), (3) by singly

infinite products, in the form

A /I /I^^"fr"l-V' cos(7rW^)+ g^"
. „ .,,.

d= «= on i+V-y.»Ag)4.r-V
^^ (13,

where

p. n i-^9--c^(»Ag)+^-
. (»,

By putting w=0, the values of A, B, G are seen to-be

Z/Jtt, 1, 1 ; while ^= exp(-7rZ7Z).

The common denominator i) of the three elliptic functions,

which represents physically a function whose logarithm is the

vector function of the negative electrodes at points whose

vectors are of the form fig, is the equivalent of Jacobi's Theta

Function of § 187; and we write

=eon{i+ . ^tf^^f ' ,

J

(15)
L smh!'{2n—l)^-rrK /K) ^ '

The numerator of sn u will now be the equivalent of the

Eta Function, defined in § 192; and thus

Hu= iJk sn tt 9u ,

/ -S'Qr, • /I ,E-MTl-29^"cos(7rM/i:)+o*»= V'^TZ QO sin(|7ru/Z)n /. \2»,2

The numerator of en w is represented by the Eta Function

oi u-\-K, and the numerator of dn it by the Theta Function of

u+K; and the factors are so chosen that
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1 Htt jK'Jii^t+K) , , ,e(u+K) „^-

Equation (6) o£ § 188 may now be written

e(u+v)Q{u-v)e^O= Q^ue^v-WuWv; (18)

wbile, by means of (7), § IST,

U(u+ v)B.(u-v)e^O=Wue^v-e^uWv (19)

264. It is convenient to replace ^ttu/K by a single letter x

;

and we shall now find that the constant factors are so adjusted

as to give the expansions in a Fourier series in the form

0u=l — 23cos2a;+22*cos4a;— 2g8cos 6x+..., (20)

Hit = 29isin x— 2g'^sin 3x+ 2g^^sin 5x— (21)

It is easily shown algebraically that
71= 00

n(l-g2»-l2)(l_g2n-l2-l)

= Q{l-q{z+ z-^)+ q*(z^+ z-^)-q\z^+ z-^)+...} (20)*

by changing z into q^z and multiplying by qz, when the pro-

duct on the left hand side merely changes sign ; whence equa-

tion (20) is inferred from (15) by putting z= e^'^; and equation

(21) is obtained from (20)* by writing qz for z, and multi-

plying by gM.
Written in the exponential form,

«= O0

014= 2i2"g"V"^, Hu=-2i2"-Y"~*''e(2"-i)^, (22)
n= —00

or with g'= e-«, a^irK'jK, and h = xi,

ett= 2'i2"e-""'+2"», ^u= -2i2"-ie-<"-^)'''+(2"-i)'....(23)

Thene('iiH- E)= ^q^e^'^ =2e-"'«+2«^

H(u-t- ^= 23("-i)'e(2»-i)"= 2e-(''-i)'«+(2"-i)^; (24)

and e(w-l-2Z)= Qu,

H(tt+2^)=-Hu, (25)

Changing u into u+ K'i, or x into x+ \i\ogq, we find

Q{u+K'i) = iq-h-'^'E.'u,

B^{uJrK'i)= iq-h-'^Qu, (26)

agreeing in giving k snu sn(w-f--S"*)= l (27)

and leading by diflferentiation to the formula

Z(u+ Z''i)=Z'M,+ (cnudni4/snw)-(^7ri/-S'), (28)

which, with (§ 176),

Z{u+K) = Zu-{K^sn.u cnuldnu), (29)

leads to

Z(u+-S'+^''i) = Zw-(sn«,dnw,/cnu)-(|7rt/Z) (30)
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265. Jacobi writes {Werke, I., p. 499) x for ^iru/K, and

ex for Gu, e^x for Hw, Q^x for B.{u+K), and 6^x for Q{u+K);
and now

= 1 - 2g cos 2iz;+ 2g*cos 4a;- 2g'9cos 6a;+ (31)

= 23isin X— 2g^sin Sa;+ 2g"*°sin ox — (32)

e^x=^(^-^-iM'^-^-'^'^^

= 2gicosa!+ 2g'Tcos3a;+ 22^^cos5a; + (33)

03a;= Sg"V~^

= l + 2gcos2x+ 2g*cos4a!+2g'«cos6x+ (34)

or, with g= e-«, b = xi,

fe = Si2» exip(-n^a+2nb),

6gX= 1, exTp(— n^a+2nb),

9ia;= Si2"-iexp{-(7i-|)%+(2n-l)6},

02^= 2 exp{-{n-^Ya+i2n-l)b} (35)

Conversely, starting with these 6 functions as defined by

these exponential series, it is possible to rewrite the whole

theory of Elliptic Functions ab initio in the reverse order, and

to deduce all the preceding results.

(Jacobi, Werke, I., p. 499 ; Clifibrd, Math. Papers, p. 443.)

For instance, we find that

e(x+ Jtt)= 0333, e(x+ li log q)=- iq'^^^x,

Qi{x+ l'n-)= d^x, d^{x+ ^i\ogci)=—iq~^e'^Qx, '

B^{x+ ^ 7r)= — O-^x, Qj^x+ |i log 2)= (f^e'^'^Q^,

eix+ lir)= ex, 03(cc+ Jilog2)= g-ie«02^ (36)

The quotient of two B functions is thus a doubly periodic

function, of real period Itr or -k, and imaginary period i log q.

The form of the and function series shows that they

satisfy partial differential equations of the form

^=_4^^ m)
dx^ dlogq' ^ '

and the functions are therefore suitable for the solution of

problems in the Conduction of Heat.

Thus, if e(x cos a+ y sin a, q) represents at any instant, t= 0,

the temperature at the point (x, y) of an infinite plane, of
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which y denotes the thermometric conductivity, then at any

subsequent time t, the temperature will be given by
0(a;cosa+ ?/sina, ge -*t'') (38)

266. Similar considerations to those of § 258 enable us to

resolve other expressions into factors ; for instance,

dnw— (ccnu ., . ^dnu+ Kcnu
or its reciprocal

K K

so that """"""""^^ ^ = ^/'
dn u— K en M_ k _ Ida u — k en u

K dn tt+/c cnu^vdnu+ K en u'

Now dcu, or sn(^— u) = l/(c, when
u= (4m+l)K+{2n+ l)K'i,

or cos^ttu/K^ cosh(27i— l)|Trir7A'';

while dc ti= — I/k,

when cos ^Trti/K= — cosh {2n— 1 )^-!rK'jK

;

and therefore we may put

dnib— Kcnu_ ^^cosh(27i— l)^7rK'/K — cos ^ttu/K

K cosh('2.n—l)^7rK'/K+ cos^TfiijK

_ l-2g"-icos(|W-S:)+ 9^"-^
...

.

~^^l + 22«-4cos(^7r'u,/ir)+22"-i'
^''''>

where the letter G is used to denote some constant factor.

Now, writing x for ^-wu/K, and supposing x and u real,

log(l — 2c cos a;+ c^)= log(l — ce-^)+ log(l — ce-^)

= — 2(c cos X+ |c^cos 2a;+ ^ c^cos 3a;+ . .
. ),

log(l+ 2c cos x+ c^)= 2(c cos x— |c^cos 2a;+ Jc^cos 3a;— ... ),

, 1 — 2ccosa;+ c^ ., ,^„ o,i^ -, v
log =—r-^ ;—5 = — 4(c cos a;+ -J-c^cos 3a;

+

Ac^cos ox+ ...).° l + 2c cos a;+c2 ^ ^ ^ '

Therefore, expanding the logarithm of (39),

, dnu— /ccnu
log -,

K

= log C'-42(g'"-icosa;+ Jg^"-^cos 3a;+ig5''-*cos 5a;+ ...)

/ g^ 1 g^ 1 <7^= log(7— 4(v^^— co%x-\-= -^—iCos3a;+- -^—-.cos5a;+..." \1— g' 3 1—9^ 1 — g^

_i„„r< ov 1 cos(2m-l)|7rit/A"
-logo ^^^^^_j sinh(2m-l)^7rA7A"

and, diflFerentiating,

7r„ sin(2m— I)j7r%/A' ..,,

A sinh(2m— J )\'ivK jK

the expression of sn w in a Fourier Series.

(40)
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267. By forming the similar factorial expressions for

/csnu+idnu and snu+ icnu,

and taking logarithms, we shall find

log(Ksnu+idnu)
- constant- SiS ^ sin(2m-l)iiru/K
-constant ^^2.^^_^ coshc2m-1^7rK'/K'-^^^>

1 ,
,

. .' i i x' 1 ainm-Tru/K ,.„.
log( sn u+ * en ^^) = constant — ^2 -, fkn7, (43

)

''^ ' m coshmTrK/K ^ '

and, difterentiating,

""""^
^^cosh(2m-l)Jx^7^' ^**^

'*''^-2Z+Z^eoshm7r^'/Z' ^*^'

and therefore, integrating,

^^^= 2K+^m cosh mJK'IK ^^^^

We have now found that, in § 78,

''~ncoshn7rK'jK

268. From § 263, we find, in a similar manner, that

log Qu= constant+ log II{ 1 - 2q^'' - ^cos(Tru/K) + g-*"- ?

„1 cos(rmru/K) ,^„= constant—2 r-r) '
,^^-, ; (47)m sinh(m7rA V-flL

)

'

*• '

and, differentiating,

Ztt=^S^-r7 E?77^, (48)

^°'»- hP-'l^^y W
«%.'.-i-|-gErg=5f). (.0)

Now, referring back to § 78, we can put

C -7L 1 _7r 2^'"

^"~Z sinh n^iir'/if~ JiT 1 - 22-'

Putting u= in (49) or (50) gives what is called "a g series,"

m 2mgr _ K{K-E)
amh{mTrK'IK) ~ ^ 1 - g^"^" ^^^ ''^ ^^
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As an exercise, the student may form the similar factorial

expressions for

1 — en u 1 — sn tt 1 — dn ii dn i* — en u
) ) f

7 , etc.,
snu en u kshu kshu

and their reciprocals

1+cntt 1+ snu 1 + dnu dnw+snw
snii ' en u ' K sn w '

/c'sn u

and thence determine, by logarithmic differentiation, the Fourier

Series for ns u, cs u, ds u, etc. (Glaisher, Q. J. M., XVII.).

The applications of these expansions will be found in papers

in the Q. J. M., XVIIL, XIX., XX.

269. As an application of these q series, consider the problem

of the electrification of two insulated spheres, in presence of

each other, of radii a and b, and at a distance c from centre

to centre, when maintained at potentials Va and Vj,, with

charges of E^ and Ei, (Maxwell, Electricity and Magnetism,

I., chap. XL).

Then Ea= qaaya+ qabVt, Ei^qatVa+qibVt, (52)

where goo. ?i>5 are called the coefficients of capacity, and qai, the

coefficient of induction.

We take u and v as coordinates, given by the dipolar system

x+yi= kta.n^{u+vi) (53)

so that tt= constant represents a circle through the poles

(0, ±k), and t;= constant represents an orthogonal circle, with

the poles as limiting points.

Now, if we revolve this system about the axis Oy, which

may be supposed vertical, the two spheres, if outside each

other, may be supposed defined by

v= a and i'= — ^S,

so that a= A;cosecha, 6= ^cosechj8, c = /<;(cotha+ coth/3)

;

and putting a+^= '^, Maxwell shows, by Sir W. Thomson's

method of successive images, that

qaa=kl, cosech(nrs—/3), qab= —^2 cosech hct,

266= kL cosech(ncT— a), (54)

the summations extending for all positive integral values of n

from 1 to 00

.

Here qab is called Lambert's Series ; it is considered in the

Fundamenta Nova, § 66.
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Again, with a — ^ = x,

qaa— li^ cosech ^{(271— 1)^+0:},

gsj = /cE cosech |{(2«— 1)ct— a;}

;

and by the preceding formulas it can be shown that

K' / X \
qbb— <iaa= Tck-:^ tan am\K'-, k'J (55)

When the two spheres are equal, x= 0, and

qaa= qbb= kl. cosech ^(2to-1)ct= /cS
j^J „„_;^

.

When j8= 0, the sphere /3 becomes a plane; and now

ffna= —1ab = ^<^^ coscch na= a sinh aS cosech na

;

which shows that the capacity of a sphere of radius a is raised

from a. to a sinh a2 cosech na by the presence of an uninsulated

plane at a distance a cosh a from its centre.

Similar functions occur iu the determination of the motion

of two cylinders or spheres, defined by v = a and —^, when

the interspace is filled with homogeneous frictionless liquid.

(W. M. Hicks, Phil. Trans., 1880 ; Q. J. M., XVII., XVIII.

;

Basset, Hydrodynamics, I., Chaps. X., XI. ; C. Neumann,

Hydrodynamiscke Untersuchungen.)

270. To illustrate geometrically the singly infinite product

forms in § 263 of the elliptic functions, consider the analogous

problems of electrodes at the corners of curvilinear rectangular

plates, bounded by arcs of concentric circles and their radii.

The vectors from the centre as origin of a series of p
electrodes, equally spaced round a circle of radius a, will be

aexp 2r7ri/p, where r=l, 2, 3, .-., p;
and with polar coordinates r, 6, the vector of the point will be

r exp iO ; so that for the p electrodes, each conducting a current

of 27r amperes, the vector function is

logn{r exp(i0)— 0. exp(2r7ri/p)} =log(r^e"Pfl— a^) (56)
r=l

hf De Moivre's Theorem (Hobson, Trigonometry, Chap. XIII.).

Interpreted geometrically, the norm is the logarithm of the

product of the distances of an}'^ point P from the electrodes,

while the amplitude is the sum of the angles the lines joining

the electrodes to P make with the vector = 0.
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We thus prove incidentally one of Cotes's theorems, namely,

that the square of the product of these distances is

(rPe^pe-aP)(rPe-'P^ - aP) = r'^P-2aPrPcos pd+ a^^, ...(57)

and, in addition, the theorem that the sum of the angles the

vectors from the electrodes to P make with the vector = is

tan-i— yf
—-; (nS)

rPcoapd— aP

and when the sum of these angles is constant, the locus of P is

au oblique trajectory of the curves

rPcospO or r^sin jo0 = constant.

With a single negative electrode at the centre, of current

nw amperes, half the total current from the n electrodes on the

circle will flow to 0, the other half flowing ofi" to infinitJ^

Now the vector potential is, on writing e" for r/a,

log(rV"^— a")— J log rV"^

= i logfcosh Tip — cos n6)+ i tan"^ 7;-^— „ — iinO (59
" ° '^ ' r"cosn6— a" '

We can isolate a sector, bounded by 6 = 0, 6= '!r/n, and

r= a; and the preceding expression will represent the vector

function of the electrical flow of Att amperes, with electrodes

at the end of the vectors T= a, and at r = 0.

The amplitude of this expression will also represent the

temperature in this sector, if the radius = is maintained at

temperature 0, while the radius d= '7r/n and the arc r= a are

maintained at temperature Itt.

271. Now suppose that on the same circle r= a, an equal

number^ of negative electrodes are placed, equally spaced be-

tween the positive electrodes ; the vectors of these electrodes

being a exp(2r— l)7r'i/p, the vector function is

— \og{rPe'P^+ aP);

or, if moved out radially on to a circle of radius b,

-\og(rPe'P»+ bP) (60;

The vector function of p equal electrodes at a exp 2ririlp,

and of p equal negative electrodes at a exp(2r— l)7ri/25 will

therefore be \og{rv&^^— aP)l{rPei>^+ aP)

;

which, when resolved into its norm and amplitude, is

r^p— 9nPrP cospd+ a^^
,

_^2aPrPsm 'p0

i ^°° ,^p+-laPrPco>i'pd+ i'^P

^

^

'r'^P- a}P

G.E.F. T
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= — tanh 1—r-£— +*tan^^-r^— , (61)
cosh^p smhpp ^ '

with |o= log(r/a); this function will represent the state of

electrical motion in a wedge bounded by = and = 7r/p.

272. The substitution in the preceding expressions in § 247

of the conjugate functions p0 and log(r/a)^ or 'pp for m and v,

leads to the solution of corresponding problems for curvilinear

rectangles bounded by arcs of concentric circles and their radii;

and now g= (&/a)^, where a and h are the radii of the curved

sides, while 7r/p is the angle between the straight radial sides;

so that in the rectangle OABG,

0A = atrip, B0=b-7r/p, OG=:AB= a-h.

The vectors of the images of an electrode at are now

ag2n/pgxp 2r7ri/p,

where n denotes any integer, positive or negative, and

r= l,2,S,...,n.

For electrodes at -4, B, C, the vectors of the images are

ag2n/3'exp(2?'— 1 )i7r/p,

a2<2>t-i)/Pexp(2r— l)i7r/p.

For a given value of n, the vector potential of the electrodes,

whose vectors on a circle of radius ag"/^ are

a<fli'e,K^2riirjp or ttg"/!'exp(2?'— l)7ri/p

will be lognCrV^^-a^g") or loglKr^e'^^+ a^g") (62)

Now, suppose a positive electrode is placed at and a

negative electrode at G, with the corresponding system of

images ; the vector function is

K= 0O

log n (r?'e^?'^-aP2^'*)/(rV^*— aV""^)
n~ -00

°°'
("T-{-^-(?)'}{-^'-C^.)'}

on introducing a negative electrode, of current tt amperes, at

the origin ; and, writing ttwjK ior p6+ ilog(a/r)P, this becomes

1 n iir\TT^-^<f'' cos(xw/ir)4-9*" ,(•.-,.

^ - ' 1— 25''"^cos(7rw/A) + g™-^
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equivalent, as in § 263, on omitting constant terms, to

log sn w.

A similar procedure with electrodes at A, 0, and B, G, will

lead to the singly infinite factorial expressions for cnu and dnu.

Projecting these equipotential and stream lines stereographi-

cally on a sphere which touches the plane, we shall obtain the

corresponding solutions for the flow of electricity on the surface

of the sphere.

(Robertson Smith, Proc. R. S. of Edinhurgh, vol. VII.

;

M. J. M. Hill and A. J. C. Allen, Q. J. M., XVI., XVII.)

273. When these electrodes are replaced by straight parallel

vortices, perpendicular to the plane, which is taken as hori-

zontal, the potential and stream functions are interchanged.

Suppose a vortex is placed at a point P in the rectangle

OABG ; to introduce the restriction that there is no flow across

the sides of the rectangle, we must suppose the motion due to

vortices which are the optical reflexions of the point P in the

sides of the rectangle ; the sign of the vortex being positive or

negative according as the corresponding image has been formed

by an even or odd number of reflexions.

The vectors of the positive images will therefore be

Ima+ ^nhi ±z,

and of the negative images

2ma+ 2«6i±2;';

where z= x+ yi, z =x— yi.

The resultant current and velocity function at ^=^+rji will

therefore be the norm and amplitude of

{2ma+ 2nU+^-z)(2ma+ 2nhi+ ^+~)
° {-Ima+ inbi+ l- z'){-Ima+ 2nbi+^+z') ^

^

At the point P, this vector function, due to all the other

images, is therefore

^
(2ma+ 2nbi)(2ma+ 2nbi+2z) .

" (2ma+ 2nbi+ z— z'){2ma+ '^nbo+ z+ z'
)'

K.' b XV
and writing ^ = - and 2K'^-ir2K'iY=u+ v%= w,

this may, according to § 263, be replaced by

log -Tj- LT-^ (65)
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The stream function at P is therefore, disregarding constants,

= J log(ns^t4— ns^OT)

= 1 loginsV. ic)+ ns\v, /)-!} ; ...(66)

so that the curve described by the vortex is given by

ns2(2Za;/a, k)+ ns\2K'y/b, k)= constant, (67)

and all the other image vortices keep up a symmetrical dance,

by describing similar curves.

274. The vortex is stationary when at the centre of the

rectangle; and now, changing to the centre as origin, the

vectors of the images are ma+nbi, where 7n+n is even for

the positive, and odd for the negative images ; so that the

vector function of the motion is given by

°^ \2ma+ (2n+ l)bi-z}{(2m+l)a+-2nbi-z}

-, unhwdnlw , , 1 — cnw ,„_,= log "-

—

----- =J:log— (68)
° en hw - °l+ cnw '

Expressed as norm and amplitude, as in § 247, this function

_, . 1 — cnw 1 — cnw' , l—cnw l + cnw'
^1 + ciiw l+cnw' * ° l+ cnw 1 — cni//

,, CT\vi— cnu ., sntt dnw— dnusn vi= * log —, \- ir log = r-—. -.

" ° cnvi+ cnu " "^ snu dn-yt+dnusnm
, , ,cnu , , ,snitdnOT= — tanh " 1

;— tanh " '^-, .

cu VI dn u sn vt

= — tanh~^(cntt cnv)+ ita.n-'^-, (69)
^ ' dnusnv

with u= 2Kx/a, v= 2K'y/b ; the modulus of the elliptic func-

tions of V being k.

The equation of a stream line of liquid is therefore given by

en u en !;= constant, or

cn(2Kxja, K)en{2K'y/b, k) = constant (70)

Close up to a vortex the velocity according to these ex-

pressions would become infinitely great, which is physically

impossible ; but a solid core may be substituted for this central

portion, and the shape of this core has been investigated by

J. H. Michell, Phil. Trans., 1890.
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275. When a point is placed inside an equilateral triangle,

the Kaleidoscopic series of positive images is given by the
vectors z, wz, urz, where z= x+ yi, and w is an imaginary cube
root of unity ; the negative images being given by z, wz', wV,
where z'= -x+yi ; the origin being at a corner of the triangle,

and the axis of x perpendicular to the opposite side (Fi^. 27, i.).

(i.) Fig. 27. (ii.)

In addition, similar groups of six images must be added,

ranged round the centre of hexagons forming a tesselated pave-
ment, the vectors of the centres of the hexagons being

2mh+ 2nhi^8 and (2m+l)h+ (2n+ l)hi^3,

where h denotes the altitude of the equilateral triangle.

In the corresponding doubly infinite products, the elliptic func-

tions will have K'/K^ J'3, so that (§ 47), «: = sin 15°, 2kk'= j^.

Then, in Weierstrass's notation, the vector potential at

for a single source or electrode inside the triangle will, neglect-

ing constant terms and factors, be expi-essed by (§ 278)

log <7ii-s )<r (C-ws )<r (C- ^^z )

o-i(f- ^ )'^i(f— (^^ )'^i(f— »^^ )

o- (f— z')a- (f— wz')a- (f
— w-r-')

<r,(^-y)<r,i^-wz')a,{^-w^s'y, (71)

while for a vortex or electrified wire, the vector potential is

,
g<^-^ M^-Q}^ )q-(^-a)^^ )o-i(^-- )q-i(^-tt'.s- )g-i(.(^-to% )log- (72)

The nature of the resolution of these functions into their

norm and amplitude is illustrated in §§227 to 231.

(0. J. Lodge, Phil. Mag., 1876; 0. Zimmermann, Bos logar-

iihraische Potential einer gleichseitig dreiecMgen Platte, Diss.

Jena, 1880 ; A. E. H. Love, Vortex Motion in Certain Tnangles,

Am. J. M., XL)
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So also for a rectangular boundary OAGB, if we write

a for ^—x+ (>]— y)i, or ^—z,

13 for }+x+ (ri-y)i, or f+Z,

y for ^+x+ (ri+ y)i, or ^+z,

S for i-x+ (rj+ y)i, or l-z;
z, —zf, —z, z' being the vectors of the point P and its images

by reflexion in the coordinate axes Ox, Oy, taken in order in

the four quadrants ; then the vectors of all the other images

by reflexion in the sides of the rectangle OABQ being ranged

in a similar manner round points whose vectors are 2ma+ 2nbi,

it follows from what has gone before that we may express the

vector function at f of all their images, taken as positive, by

log era (7/3 o-y o-(?, (73)

with w^= a, oog= bi;

disregarding constant factors, and exponential factors of the

form exp{Au+Bu^).

But when we represent the vector potential of a vortex or

electriiied wire at P, the vector potential becomes

,
'-'~iJ «)

276. As another illustration of the connexion of a regular

Kaleidoscopic figure with Elliptic Functions, consider the solu-

tion of the reciprocant

{f+ l)c-10abt+ 15a^==0, (75)

where t= rr, a=T a- ^ =^v «= -,--•

dx ax'' dx^ dx'

(Sylvester, Lectures on the Theory of Eeciprocants, VI., 1888.)

Mr. J. Hammond has shown (Nature, Jan. 7, 1886, p. 231

;

Proc. L. M. 8., XVII., p. 128) that the integral of this equa-

tion (75) may be written

.^r (i+ti)dt
*+2/^ y^|i(^_xi)(i+ii)6+|(^+X'i)(i-ii)«}-

••^^^>

By turning the axes through an angle |-tan"i(X/K:), we can

make X vanish ; and now, replacing \k by unity,

"'^^''-JsJ{{i+ti)'^+{\-tifr
^^^^

i±|y=-Kx+^/^; 0,4), (l^)'=_^(x-2/i; 0,4),...(78)

and ^{x+ yi)<p{x-yi) = l '....(79)
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Since (§196) pcoz= wipz, pw^z= w^pz,

where w is an imagiuary cube root of unity, therefore

pw(x+ yi)pw^x— yi) = l, (80)

which shows that the curve is unchanged if turned through an

angle of 60° about the origin (Fig. 27, ii.).

Captain MacMahon has shown that the intrinsic equation of

this curve may be written

cos3i/. = dn(s/c), with k=U2 (81)

The student may also show that the equation of the curve

may be written in one of the forms

am(a;±-K', K)= eim{y±K', k),

/c'2tn2(a;, /c) = /cHn2(7/, /),

<c^sn^(a;, /c) = /c'^sn^(2/, k),

dn(a;, /c)dn(2/, k')= k (82)

with /c= sinl5°, (c'= sin75°.

As a similar exercise, the student may solve the reciprocant

tc-i>ab = (83)

in the form ^x py^ ±1, (84)

and determine its intrinsic equation, drawing the correspond-

ing curves {Proc. London Math. Soc, XVII., p. 360).

277. When we expand, in ascending powers of u, the

logarithm of a doubly infinite product, such as that in the

numerator of sn u in equation (1), § 258, we find

logttn'n'(l-^) = logu-u2fi-i-K2n-'-K2f2-3-...(85)

Now, when the origin is taken at the centre of all the

points whose vectors are Q, the coefficients of u, v?, u^, ...

vanish ; but the value of the series is still indeterminate, until

the infinite curve containing all these points has been defined.

For if P denotes this infinite product, and P' its value when

the boundary has changed into a similar curve, then

logP'-logP=|u220-Hiu*2n-*+...,
where the summation now extends over the region lying be-

tween the two boundaries; and now the limit of 1,0,'^ is a

definite number, A suppose, while the limit of 2f2~*, ... is zero.

Therefore

logP'-logP= |J.u2, or P'= Pe^^"l..; (86)

so that the value of the infinite product depends on the shape

of the infinite boundary (Clifford, Math. Papers, p. 463).
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But, as in § 261, Weierstrass removes this ambiguity bj'

attaching to each linear factor of the product, such as

an exponential factor expf v.^+ ^ -^2) >

and, in the physical analogue, the corresponding electrode at Q,

whose vector function is log(l— tt/Q), must have associated

with it a uniform flow in the direction of the vector O, repre-

sented by u/Q ; and a streaming motion in rectangular hyper-

bolas, whose asymptotes are parallel and perpendicular to the

vector Q, represented by ^(ujQy.

Now in the expansion of the logarithm of the doubly infinite

product P, when these exponential factors are introduced,

logP = logu-lu^I,n-*-iu^'2Q-^- ...

,

(87)

an absolutely convergent series ; that is, a series the value of

which is independent of the order of the terms.

278. Making a new start ab initio with the sigma func-

tion (§ 195), as defined now by the equation

where f2 = 2mft)-|-2nft)', and w'luii is a real positive quantity, so

that o), w correspond to w^, w^ or ai^, w^ according as A is posi-

tive or negative, then crvu is the analogue of Jacobi's Eta Func-

tion ; in fact,

o-K = Oe^"'H^(ei- e^u-= Ge^''%(i',ru/oo), (88)

(§ 263), where 0, A are certain constants; also logaru is the

same as logP in equation (87).

Now denoting, as in § 195,

d loff crU . . , cZ^log crU dtu ,

= ^ -u^'E^-^- u'l.n- <"-...

,

(V)

by differentiation of
( U) and (58) ; so that, on reference to § 195,

we may put

g'2= 60Efi-*, (/3= 1402Q-«, (W)

also j^/= 2*.3.52.72f2-8, c/2,^3= 2*.3.5.7.11 SQ-^", etc.
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Differentiating (60) again,

^'-=-5-^'(^3 (Y)

Then (a-u)/u, u^u, u^pu, u^p'u, u*p"u, ..., are unaffected by

the considerations o{ homogeneity of § 196 ; as for instance in

the expansions in equations (21) and (22) on p. 249.

A change in (X) and (Y) ofm into u+ 2pw+ 2qw', where p and

q are integers, merely leads to a rearrangement of terms ; so

that, as in § 250,

p{u+2po}+ 2q(x)') = fw.

Also, since in Q, = 2mu)+27iw', the arrangements (m, n) and

(— m, —ti) exist in pairs, therefore

^'ft)= 0, p'{w+ w) = Q, ^V = 0;

and p'%= 4. J3tt— pft). <pu— p{w-'ru)).fu — <pu)

= ip^u-g^pu-gs (AA)

as originally defined otherwise in § 50.

A change of u into u+ 2win(y) shows that, by a rearrange-

ment of terms,

^{u+ 2w)= iio+2r, (89)

where ?; is a certain constant, determined by putting u= —w,

so that >,= ^w (90)

Similarly ^{u+2w')= }a+ 2,,', (91)

where j;'= fft)'; (92)

and, generally,

^(u+2pu>+ 2qw') = ^u+ 2p,,+2qr,' (BB)

Integrating (89) and (90),

a(u+ 2£o) = Ge'^i^cru, a(u+ 2a)') = C'e^^v^

;

where G and C" are determined by putting w= — to and — u) ;

so that

(7(u+ 2co)= - e2'K«+'^)cru, cr( u+ -'«,') = - e2''(''+"'Vw, (93)

and therefore

<r(u+2pto)= _(-l)3'+ie2J"'<«+''"Vu, (94)

(7(u+ 23a)')= -(-l)'+'e'«'''^''+'"'^<^. (9^)

and, generally,

(y{u+2pu,+ 2qoo')= -(-l)(p+iX?+i)e(2)>'7+2«i'Xi.+Pa-+?«')o^_ ...(CO)

obtained also by integration of (BB).
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The doubly infinite products in ( U) may be converted into

singly infinite products ; and now

TT 2oo (1 — g^")^

where g= 6""'/", and
4^2)1

2,,co= i-TT^- TT^E J = iTT^ - TT^S cosech2(«ft,7ft)i), ... .(97)

etc. ; for the proof of these and other similar formulas merely

stated here, the reader is referred to Schwarz and Halphen.

Also, denoting Q+ w, Q+ w+ ai', Q+ to' by Qy O2, O3,

then the function a-„M of § 202 may be otherwise defined ab-

initio by the relation

_

..u= eK.^nn(l---)exp(^^+|g (EE>

which will be found to lead to the preceding results.

Denoting y-^ log a^u by — p^u, we shall find that

^^u= ^{u+ a,J, a = l, 2, 3 (98).

(A. R. Forsyth, Q. J. M., XXII.)

279. Returning to the function G of equations (8) and (10)„

§ 215, and changing the sign of the u's, we may also write it

^_ (r(v+ u^+ U2+...+ Ufi)(T(v — U^)a-{v— u,) ... o-{v— Uu)

= Co+ CiP?;+ C2p''i;+...+c^j3('"-%; (99)

and since we may suppose the it's and v to be all increased by

equal amounts, the condition (9) of § 215 is no longer required.

Now, since G vanishes when v = 'Wr, where r=l, 2, 3, ..., yu;,

therefore the coefficients c„, c^, c^, ..., Cf,. are determined by

a series of equations of the form

0=c^+c.^pur+c^f'ur+... + c^f'^y--'^)ur; (100)

and therefore the determinant

1, ja-y, f'v, ..., p(/^-% =MG, (101)

1, fU^, f'Ur, ..., J3(^-1H

where if is a factor independent of v ; and now this theorem,

as a corollary of Abel's theorem, shows that the determinant

also vanishes when v— —u^ — n^— ...— u^.
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The symmetry of the determinant shows that M must be a

symmetric function of the u's ; or writing u^ for v, and denot-

ing the determinant by ^(u„, u^, u^, ... , Ufi), then ^ is a

symmetric function of the u's, siich that

{p<q,p, 2= 0, 1, 2, ..., fji),

and it will be found (Schwarz, § 14) that

J,=(_1)^m(/^-1)1!2!3!... //!.

Thus, for instance, with jj. = 2,

1, pu, f'u \
ij(u-\-v-\-w)(T{v— w)(T(\r — Vb)(j(;ii— v)

1, fv, f'v cr^u ar^v a^U'

1, pw, (p'w
I

By forming a similar function C" of the it"s, subject to the

condition (6) of § 215, we see that (7) is an elliptic function of

V, which can be expressed by GfC', where C and C are given

by determinants, as above.

Equation (CC) is also sufficient to prove that the function

in (7) § 21-5 is doubly periodic.

As an application of the principles of this article and of

§§ 209, 215, 216, 257, the student may prove that fi of § 215 is,

writing a for u-^, b for u.^, and u for v, given by the equations

o _ "'('"'+ tt)q"(u

+

b)cr{a+ b)

ar(u+ a+ b)(TU a-a a-b

=
1 1, pu,p'^u --| 1, pii, ^'u.

1, fa, f^a I, fa, f'a

\
1, fb, f^b [ 1, fb, f'b

= ^{u+a+ b)-^u-^a-^b.

We thus verify the equations of §§ 209, 257,

du (7Ua{a+ b) ahia-aab

= (p{u, a)(p{u, b).

When condition (6) of § 215 is not satisiied, then (7) reappears

qualified by an exponential factor of the form e^" when v i&

increased by 2pw+ 2qa)'; the function is then called by Hermite

a doubly periodic function of the second kind ; the function

^{u, v) defined in § 201 being the simplest instance of this

kind of function.
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280. Making the u's all equal, as in § 218, and interchanging

u and V, the function

is a doubly periodic function which can be expressed in the

form of C ; but now the coefficients c must be determined by

a series of equations of the form

0= c^p'v-\-c^f"v +...

,

0= c^f"v^-c^fv-^...,

Expressed as a determinant we may now put

^ m\

pu-pv, pu-fv,
p'v, f"v,
n fff

fV, f V,

J3(,"-l)l6— J3(^-%

Finally, making u= v, and dividing both sides by {u— vf;

we find, in the limit.

M
fu, f"'u,

(pv.Wu,

0(^ + l)tt

where (Schwarz, § 15);

.(GG)

(l!2!3!.../x!)2

Halphen denotes this function of u by i/r(^+i)U.

Thus for instance, as in § 200, with fx = l,

Again, with ^ = 2,

, a-3u

pu.

^=l{p'u f"'u- p"^u) = p'hi{pu - p2u).

n\pu— pnu), ....(HH)

(cruj

By logarithmic differentiation,

^logV'»^=^log = ^^^
' (o-lt)"''

whence pnu can be expressed rationally in terms of pu, p'u,

When u= v,
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Also, when u= 0,

It(0-U)M- IXU= ( - 1 Y^J^y= { - lYi^^V

= V-l)MH-l^!; (102)
and therefore a^= 0, M^hen fiv = 2pui-^+ ^qw.^.

281. In the pseudo-elliptic integrals (§ 218)

fjLV= (mod. ft)j, ftjg)

;

and now, knowing the number fx, the coefficients c^, Cj, Cj, . . . in

G or xtt are readily calculated from a knowledge of the values

of pv, p'v, p"v, ... ; in this way the results employed in §§ 218,

219, 223, 225, 233 were inferred.

Thus, for instance, in § 219, we know that

/u = 3, /« (' = Scoj+ toj

;

pv= h, p'v=-3i^'2, p"v=-6, ^/"(.•=lSi^2, p""('=-252, ...;

so that the ratios of c„, c^, c^, ... can be calculated from the

equations = 0^+ ^c-^+ ^i^2c^— Gcg,

0= -Qc^+\SiJ-lc,- 252C3.

Taking an arbitrary value of c^, say %, we find, by solution,

Co=-9, Ci=-10, C2=-3iV2;

XU= fCgd" p"u— Si^2 f'u— lO^u— 9)

= %Cs{{2pi(,+ 2)(2s>u-7)-2ij2p'u}.

iMow X"- „4„ ,12^,

='^^^^^-4^''''

so that, in the algebraical herpolhode referred to axes rotating

with a certain angular velocity, we may put

(X+ iyf=Axu(pu - e^) - i,

thus leading to the results of § 219.

As other numerical examples the student may investigate

the results of §§ 218, 223, 225, 233 ; also the example due to

Abel (CEuvres, I, p. 142), where yu = 5, 5*2=12, 5*3=19, and

v= iw2 01 ^£^2'^ "when pv= —2 Or 1; we then find that the

values of Cg, c^, Cg, Cg, c^, Cg are proportional to

-288, -36, -48i^3, 12, i^3, 0;

or -396, -252, -121^3, -24, i^3, 0.
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Writing s for pu, then we may put

Xit = — 288— 36^311.— 48i^3 ja'tt+

1

2p"u+ i^3^"'u

= 36(2s2-s-10) + 12iV3(s-4)V(4sS-12s-19),

XU=- 396 - 2o2fu -VHJ'if'u- 24<p"u+ ij3^"'u

= _ 36(4s2+ 'i's+ 7)+ 12iV3(s-l)^(4s3-12s-19).

We thence infer that the corresponding pseudo-elliptic inte-

grals involve

(6-4)V(4s3-12s-19) _ V3(2s^-s-10) _
*''" " ^H2s'-s-10)

-''°'
2(s-l)i

"'

and now by differentiation we infer that

2S+ 13 ds __2_ i
(s-4)V(4s^-12s-19)

s-i ^(4s8-12s-19) V3 Jd(2s^-s-10) '

4s-7 (Zs 2
i(
s-l)^(4s^-12s-19)

7+T V(4s^-l^s-19)~V3 ' V^(4sH7s+7) '

Thus, in the Weierstrassian notation,

= -^^^°"VW^+7'u+7)+^^^--
with gTg= 1 2, fjTg= 1 9, according as pv=l or —2.

These results may be employed in the construction of

degenerate cases of the catenaries discussed in §§ 80, 205, 206.

Thus, for instance, the curve given by

r^= kXpu+ 2),

r'cos(2j3v - 00) = ^3Jc(4<r*-dJc^r^+ 9¥),

is a plane catenary for a central attraction n^vjr per unit of

length, in which (§ 80)

t= inhv{r^- Sk^), tp= i^JSn'wk^

So also a tortuous catenary is given by the equations

r^ = k^{p(2^/k)-l},

7 '^cosCSe+ %J3x/k)= ^3k(2r*+ 3JcV- 2¥),

under an attraction nHur to the axis Ox.

/
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282. Other pseudo-elliptic integrals are formed by the sum

of two or more elliptic integrals of the third kind, when the

sum of the parameters is of the form pw+ qai, as in § 226, for

the expressions of ^ and ^'.

We shall denote the integral of the third kind in the form

(j8i), § 199, by $(u, v), as this we have found is the form of

most frequent occurrence in the dynamical applications ; and

now (jSj) shows that

^{u, a)+ ^{u, &)— #(u, a+ b)

= ica+ tb— c(a+o)}u+ h los—,—;

—

; ;,
,—f-r

—

^t: (

- _ 1 P'^~&'^ I 1 1 pia+u) — ^(b + u) pu — ^(a+b— u)
~ ^pa—pb ^ ^p{a— u) — p(b—u) pu— p{a+ b+ u)'

by reason of (y), § 197, and (K), § 200.

When a+ 6 = ci)a, p'{a+ b) = 0, ^{u, a+ b) = 0; and now

$(u,a)+*(.,?,)=-^^u+ilog^^^-.
By equation (N), § 249, we may write

^^^
p(a+u)-e.

^^^
Upu-ea.pa-ep.pa-ey\

* ^ p{a — u)-ea \ \pa—ea.pa — ep.pu— e./

= tanh-i—5 4—_— or ttan-^

—

—

;

,

<pa—ea<pn pa—e^pu
the latter form to be employed in dynamical problems, where

pa is always imaginary ; thence the expressions given for ^
and ^ in § 226 can be inferred.

As an application we can put a+ 6 = co^+ cog or cog in § 209, and

thence deduce a degenerate case of the Spherical Pendulum.

Examples.

1. Prove the following q series :

—

(i.) l + 2q+ 2q^+ 2q^+... =eK^ ^(A7W)

;

2qi+ 2qi + 2q'f + ... _liK_
^"^

l + 2q + 2q^+... -QK'^"'
i-2?+2?*-..._eo^

'"!)
i + -irf+2q^+..rQK ^^ '

(iv.) (l-2g+ 2g*-...)*+ (2gi+ 2g*+...)*= (l + 2g+ 2g*+...)*;

(v.) J{kk')^ 2qi, q^^\KV\ J:^lll128q\ or - l/1728g, accord-

ing as A is positive or negative, when q and k or k' is small.
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2. With the notation of § 265, prove the theorem

eiw)6^{x)eiy)d^{z)- e,(w)e,(x)6,(y)d,(z)

-e{w)eix)e(y)e(,z)+d^(w)e^(x)e,(y)e^(z)

= 20i(s)0i(s-y- z)9^{s-z- x)e,(s-x-y),

where ^s^w+ x+ y+s.

Deduce the formulas

(i.) /cV%n 7/ sn ?; sn r sn s

—An w en t; en r en s+ dn u dn i> dn r dn s— k'^= 0,

provided u+ v+r+s= 0.

(ii. ) K^sn |(u+ v+r+ s)sn ^('W+ v— 7'— s)

Xsn^(u—v+r— s)sn^{u— v— r+s}

_(dnudni'dnrdns-K^cnttcni;cnrcns+KV^snttsnvsnrsns-K:'^)

(dnwdn'ydn7-dns-A:-cnwcnt;cnrcns-/cV%nusni'snrsns+K'^)'

3. Show that

(«2- e3)o-i(tt)a-i(3M.)+ (eg- e,)o-2(w.)o-2(3tt)+ (e^- e^)as(u)crg(Su)

= 2(^2- eg) (eg- e^){e^- e^)a\u)a-%2u).

4. Show that Weierstrass' function (t(u) satisfies the partial

differential equations

Show that the second of these equations is also satisfied by
the function

o-a(u)/{{ea— e^){ea— ey)}i;

and write down the difierential equation satisfied by a-aU.

5. Prove that the projection of a geodesic on a quadric of

revolution on a plane perpendicular to the axis is analytically

similar to a herpolhode (Halphen, II., Chap. VI.).

6. Evaluate the surface of an ellipsoid.

7. ConiStruct some degenerate cases of trajectories or caten-

aries on a sphere, or on a vertical paraboloid or cone, employing

the numerical results of the pseudo elliptic integrals.



CHAPTEE X.

THE TRANSFORMATION OF ELLIPTIC FUNCTIONS.

283. By the Theory of Transformation is meant the ex-

pression, in terms of the elliptic functions of modulus k and

argument u, of an elliptic function with respect to a new
modulus \ and of a proportional argument ujM; and then If is

called the multiplier, and the relation connecting the moduli

X and K is called the modular equation.

A particular case of Transformation has already been intro-

duced in Landen's Transformation (§§ 28, 67, 71, 123, 181, 182)

in its application to Pendulum Motion, and to the Rectification

of the Hyperbola.

In accordance with the plan of this treatise, we begin with

a physical application of the Theory of Transformation, before

proceeding to the analytical treatment of the subject.

Suppose then in § 259 that an odd number, n, of such

rectangles as OABC are placed in contact, side by side, so as

to form a single rectangle OAnB^G, of length 0^„= '!ia,|and

height OC=h; and now put

OA^/0C=nalb = KIK',

OA 100= alh=A/A',

so that A'/A= nK'/K; (1)

where K, K' denote the quarter periods with respect to the

modulus K (§ 11), and A, A' with respect to the modulus X.

Let us begin by placing a positive electrode at 0, and an

equal negative electrode at 0; then, inside the rectangle OB,

the vector function will be

log sn Az/a= log sn(Ax/a+A'iyjb),

with z= x+yi.
G.B.F. u
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But, inside the rectangle 05„, the vector function of these

electrodes and their images will be that due to positive elec-

trodes at 2sa and negative electrodes at 2sa+bi, where s

assumes all integral values from to n— 1; and the vector

function of this system is (§§ 259, 275)

s =n-l
log n sn K{z— 2sa)/na = logn sn(Kxjna+ K'iyjb— 2sK/n).

The physical equivalence of these two forms of the vector

function, as seen from two different points of view, shows that

5=n-l
sn(A2:/a) =A n sn(Kz/na— 2sK/n),

8=

or sn(u/M,\)= AIlsn{u-2sK/n), (2)

where u/M= Az/a, u= Kz/na

;

so that M=K/nA = K'/A'; (3)

this is the formula for the first real transformation of the sn

function, of the nth. order.

Similar considerations will show that

cn{u/M,X) = BTLcn{u-2sK/n), (4)

dn{u/M,X) = G'ildn(u-2sK/n) (5)

If, as in § 263, we put

q = ex.Tp(— -7rK'/K), and r= exp(— ttA'/A)
;

then r= 2'', (6)

and X is less than k.

It simplifies matters to place the rectangle OB in the

middle of n such rectangles placed side by side, and now s

ranges from —^(n— 1) to ^{n+ 1); and combining equal posi-

tive and negative values of s, we find, according to (7) § 137,

sn(u/ilf, X)= ^sntt 11 ^-^^ 5- (7)'

j=i 1— K^sn^zswsn^ ^ '

where a) =K/n;

2/=^n^^—4,, (8)

connecting y = sn(u/M, X) and x= su(w, k), a= sn{2sK/n).

284. Next suppose that n equal rectangles, such as OABG,
are piled on each other, so as to form a single rectangle

OABnGn, where OA =a, OGn= nh ; and now put
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OA/OGn=a/'nb = K/K',

OA/OG = a/6 = A/A';

so that K'/K=nA'/A (9)

The physical equivalence of a positive electrode at and an

equal negative electrode at G, and of their images in the rect-

angle OABG, with the positive electrodes at 2sK'iy/b and the

negative electrodes at {2s+l)K'iy/b in the rectangle OABrfin
and their images, shows in a similar manner that

sn(A2:/a, X)= J. n sa{Kxla+ K'iy/nb- 2sK'i/n),

where s may assume all integral values from to n— 1, but

preferably, from —^{n— 1) to l(n+ l); or

sn(u/M, X) = AILsQ{u-2sK'i/n, k) (10)

where ujM=Az/a, u= Kzja;

so that M=KIK= K'lnM; (11)

and now, with

q= exTp{ — TrK'/K), r= exp(— ttA'/A), .

we have r= g^'", (12)

and now X is greater than k.

Similar considerations show that, by placing positive and

negative electrodes at A and G, or B and G, we shall obtain

the formulas

cn{ulM, X) =Bn cn(u

-

2sK'ijn)

;

(13)

dn(u/M, X) = n dn(tt- 2sK'i/n) ; (14)

these are the formulas for the second real transformation of

the elliptic functions, of the nth order.

A similar physical interpretation of Transformation may be

given in connexion with the curvilinear rectangles bounded by

concentric circular arcs and their radii, as discussed in § 270.

285. Besides the first and second real transformations in

which q is changed into g" and q^'", now denoted by r^ and

r^, there are in addition n— \ imaginary transformations,

when 71 is a prime number, in which q is changed into w^g^/",

denoted by r^, where ^ = 1, 2, 3, ..., n—1, and w is an

imaginary nth root of unity ; so that, corresponding to a given

value of K, the modular equation of the nth order, if prime

will be of the (n+ l)th degree in X, having the roots

^00' ^0' ^1' ^2> ••' Xn-1,

of which two only, X„ and \, will be real ; X„ < k <\.
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We need only consider the Transformations of prime order,

as a Transformation of composite order, mn, can be made to

depend on the transformations of the mth and nth order.

The different transformations of the mnth order are formed

by changing q into g™'" ; so that the number of transformations

for any number in general is the number of divisors of mn;
reducing to n+ 1, as before, for a prime number n.

For a transformation of order n^ there is one real transforma-

tion for which q remains unaltered, and we thus obtain the

formulas for Multiplication of the argument u by n.

286. After this physical introduction, we can proceed to the

general algebraical theory of Transformation, as developed by

Jacobi in his Fundamenta nova theorice functionum ellipti-

caruTn, 1829.

The theory in its generality consists in the determination of

2/ as a rational algebraical function of x, of the form

y^u/r, (15)

where U and V are rational integral functions of x,

V'=anX"+an-iX'^-^+ ..+a^x+ ao,] ,jg.

F=6„cc»-|-6„_ia;"-i-|-... + &ia;+M
so as to satisfy a differential relation of the form

Mdy_ dx ^_,

vy~j^' '
^

where X= ax^+ 4:hx^+ 6cx^+ '^dx+e,
\ ,-|o\

Y=Ay^+ ^By^+ Wy^+Wy+E,] ^ '

Making the substitution of (15), we find that we must have

\dx dx/ _ dx

and the first condition requisite is that

AU^+4^BmV+6CUW^+4^DUV^+EV*= XT\...(19)

where T is a rational integral function of x, of the (2%— 2)th

degree ; and now, if we can make

r=i/(fF-af) (20)

where ikT is a constant multiplier, the Transformation is

effected.
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But if U and V are both of the nth degree, or if one of the

nth and the other of the (ii— l)th degree, so that either a„ or

6„ (not both) is zero, this is necessarily the case ; for any

square factor in
( U, F)* will appear as a linear factor of

dx dx'

which is also of the (2%— 2)th degree, and can therefore only

differ from T by a constant factor M.

The Transformation is now said to he of the nth order.

By taking X of the sixth, instead of the fourth degree, Mr.

W. Burnside has derived hyperelliptic integrals {Proc. L. M. 8.,

XXIII.) from the elliptic element dyl,JY, similar to the hyper-

elliptic integrals of §§ 159, 160, by means of substitutions of

the second, third, and higher orders.

Now denoting by a, /3, y, S the roots of the quartic X= 0,

and by a, j8', y, S" those of Y= ; so that, resolved into factors,

X= a{x-a)(x~^){x-y)(x-S),

Y=A(y-a'){y-^')(y-y){y-S');

then A{U-a'V)(n'-/3'V){U-y'V){U-S'V)

= aT\x- a){x -/3){x- y){x- S)

;

and now a factor, such as U—a'V, must be composed of linear

factors, such as x— a, and of the squares of factors of T.

In the expression y=U/V there are at most 271+ 1 arbitrary

constants ; and in determining [/"and Fso as to satisfy relation

(19) we determine 2n— 2 of these arbitrary constants ; thus

there remain at disposal three arbitrary constants, correspond-

ing to the three constants involved in an arbitrary linear

transformation, such as that obtained by writing (§ 139)

(lx+ m)/(rx+ m') for x,

as exemplified in §§ 153, 160, where the constants I, m, I', m
are chosen so as to make X and Y quadratic functions of x-

and 2/^.

When X and Y reduce to quadratic functions of x and y,

the elliptic functions degenerate into circular and hyperbolic

functions: and now there is no Theory of Transformation,

except for the change from circular to hyperbolic functions, as

in §16.
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287. Jacobi, in his Fundamenta nova, works throughout

with the differential relation for the sn function (§ 35)

Mdy _ dx _ , _^.

^/(l _ 2/2 _ 1 _ ^2y2^
-

j(^i _a,M - kV)~ ' ^ ^

connecting x= sq(u, k) and y= sn(u/M,X).

Now, if y=U/V.
then, since u= makes x= and y = 0, y and therefore U
must be an odd function of x, the other, V, being an even

function ; so that for an odd order of the transformation

U=a^x+agX^+...+anX^, V==ba+b^^+... + hn-ix'"-'^^

Since 33=1, y = l; x= 1/k, y=l/X; etc., are simultaneous

values of x and y, the relation connecting x and y may be

written in any one of the following forms,

1+ y = {l+ x)A^IV, or V+ U={1+ x)A^;

1_ y = (\- x)A'yV, V- &=(!- x)A'^;

l+ Xy = {l+Kx)G^IV, V+XU={1+KX)C^;
l-\y = (l-Kx)C'yV, V-XU'=(1-KX)G'^; (22),

where A and G are rational integral functions of x, of the

|(n— l)th degree, which become changed into A' and G' when

X is changed into — a; ; so that we may put

A=P+Qx, A'=P-Qx,
G=P'+q'x, G'=P'-Q'x,

where P, Q, P', Q' are even functions of x ; and therefore

l-y^ l-xfP-QxV 1-Xy _ l-Kxf
P'-Q'xy

.

1+y l+x\P+QxJ' 1+Xy 1+kx\P'-Q'x) '

_ P^+ 2PQ +Q^a!^ X kP'^+2P'Q'+kQV ,^„.giving y ^P2^2PQx^+ Q^x^~XP'^+2kP'Q'x^+QV"^ ^

When the order n of transformation is even, we put

U=a^x+a^a^+...+a„_iX'^-\ V= bf,+ b^^+.

.

. +6„a!"

;

and now V+U={l+x)(l+ kx)B\ r+XU= I)\

V-U=(l-x)(l-Kx)B'\ V-XU=I>'^; (24)

where B, D are rational integral functions of x, of the (|to— l)th

degree, changing into B' and U when x is changed into —x;
so that we may put

B=R+Sx, B'=R-Sx;
I>= R'+S'x, D'==R'-S'x;

where R, S, R', S' are even functions of x.
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1

288. The number of independent constants represented by

the a's and b's in U and V can be immediately halved by
noticing that a change of u into u+ K'i has the effect of

changing x into 1/kx and y into l/Xy (§ 239); and therefore of

interchanging U and V.

An algebraical simplification is thus introduced by writing

x/^/k for X and y/^\ for y, as in § 143 ; the differential rela-

tion now becomes of the form (Cayley, American Journal of

Mathematics, vol. 9)

J{l-->j3y^+ yi) ^(l-2ax^+ x'} ^ ^
and 2a = K+l/K, 2^= \+ l/\, (26)

,

.

sn(u, k) sn(pu, X)

.

connecting x =—^—-, y=—~-—->

and now, if y= U/V,

U^B„.^x+ ...B^x^'-^+B^^, V=B,+B^''+...Bn-^x^-\

for an odd order n of transformation, involving only n co-

efficients JSq, B^, ... , Bn-i, and therefore 71—1 arbitrary

constants in y; also Bn_i= pB^.

It follows then that, in the original relation y^^UjV, con-

necting a;= sn('u., a:) and y = sn(u/M,\), if a^~x^ is a factor

of U, then 1 —K^a^x^ must be a corresponding factor of F; and

we thus obtain the expression of y as a, function of x given in

equation (8), and in addition the relation

X= i/Vna^ (27)

so that we may write

^=^rn^^. (28)

Professor Cayley writes equation (25) in the form

(1+ Sy+ Sy+...)dy= p{l+ R^x^+ R^+...)dx,

y+lSy+ iS,y'+... =p(x+ ^R,x'+ iR^'+...),

where the R's and S's are the zonal harmonics of a and /3.

289. Writing this equation (28) in the form

.n(.^-a^)-^-^sn(J,x)n(.-^,)=o,

which is an equation of the 7ith degree in x, the roots of whicli

are a;= sntt, sn(u ± 2ft)), . .
.

, sn{u±(n — l)ft)}.
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where w= 2Kln or 2K'i/n for the two real transformations, we

find that the sum of the roots

.^^F^)<l">-+-2-); (^^)

or combining the equal positive and negative values of s,

X /^^,^ ,^2snucn 2s&) dn 2sa)fu\ 2snu

^.= ^+ 2 "^^^r%-.T'" (30)

Kilf Vilf' 'V ~ ^ 1 - /c'^sn^ -Isw sn%
Xy_ ^ 2x^(1 -aM-/cV)
^jf- '^+ ^ 1-AV

the expression for y when the product in equation (8) is resolved

into its partial fractions ; and similar expressions hold for the

en and dn functions (Jacobi, Werke, I., p. 429 ; Cayley, Elliptic

Functions, p. 256).

290. We need not therefore confine ourselves, with Jacobi,

to the Transformations of the sn function ; but we may some-

times find it preferable to seek the relations connecting

a;=cn(u, k) and y= cn{u/M, X),

when (§ 35 ; Abel, CEuvres, I., p. 363)

Mdy dx , ,„,,

y/(l-yK X'2

+

\Y)~ V(l - ^'
• 'c"+ '^'^')~ '

or the relations connecting

a;= dn(^t, k) and 2/ = dn(u/l/, X),

^^^"
V(i-^'^^^-x'^)

=
V(i-^'^'''^^-'^'^)

^^''' ^^^^

relations already given in (4), (5), (13), (14) of §§ 282, 284.

But Prof. Klein points out (Math. Ann., XIV., p. 116) that

it is the diff'erential form of § 38 (really Riemann's form),

connecting z= sii%u, k) and t= sn\u/M, X),

and leading to the relation, on writing k for k^ and I for X^,

Mdt dz , n„,

J{U.l-t.l-lt)~J(4>z.l-z.l-kz)~' *
^

which is the most fundamental in the theory of the elliptic

functions sn, en, and dn ; the periods now being 2K and 2K'i,

instead of 4:K and 2K'i, etc. (§ 239) ; the quadric transforma-

tions (of the second order)

z= x^, 1—x^, or 1—kV,
t= y\ l-y\ or 1-XY, (34)

leading immediately to the preceding transformations of the

sn, en, and dn functions.
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291. The Theory of Transformation may be developed en-

tirely from the algebraical point of view ; but Abel has shown

how the form of the transformation of the nth order may be

inferred from the elliptic functions of the nth parts of the

periods, called by Klein, modular functions.

Thus taking the first real transformation connecting

z= sr)?{u, k) and i= sn^(u/ilf, X)

in relation (33), then

1- t={i-z) n(i-p' -D,

l-lt={l-kz)IL{l-k^zf-^D,
B= Jl{\-kazf, (35)

where a— sn^2sK/n, /3= su%2s— l)K/n,

and the products extend for all integral values of s from 1 to

i(n-l).

The form of the factors is inferred by Abel from the con-

sideration that

(i.) when t= 0, u/M= 2sA+ 2s'Mi,

where s and s' are integers ; and, from equation (3),

u= 28Kln+ 2s'K'i,

z=^sn^2sK/n = 0, or a;

(ii.) when t= 1, u/M= (2s- 1)A -1- 2s'A'i

u = {2s-r)K/n+ 2s'K'i,

z= SBJ'{2s-l)K/n= B or 1;

(iii.) when t= l/l, ulM=(2s-l)A+(2s'-l)A'i,

u = (2s-l)K/n+ (2s'-l)K'i,

z= snm2s-l)Kln-K'i} = l/k^ or 1/k.

(iv.) when t= oo, u/M= 2sA+ (2s'- 1)A'i, .

u = 2sK/n+ {2s'-l)K'i,

z= sn%2sK/n— E'i) = 1 jka, or x .

Similarly the relations can be inferred connecting

2=cn^(tt, k) and t= cn^(u/M, X),

or z= dn\u, k) and t= cn%u/M,X),

not only for the first real transformation, depending on equa-

tion (3), but also for the second real transformation, depending

on equation (11), and also for any one of the imaginary

transformations of the nth order.
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292. In Weierstrass's form the relation is

Mdy d^ T

Ji.'^y^- JiV- rs)
~ V(4a3^- 9i<x^- 9s)

~ ^'

connecting x= p(u; g^, g^) and y= p(u/M; 72,73),

by a relation of the form

y=U/V-,
and this must be equivalent to relations of the form

y-e^= (x-eM^/V, or (x-ep)B'/V, or {x-ey)G'/V, (36)

for a transformation of odd order; giving

iy'-y,y-ys^(^x^-g,x-g,){ABGy/V'; (37)

so that V must be a perfect square; thus leading to the

requisite number of equations for the determination of the

arbitrary coeflBcients in IT and V, and an equation over, which

relation may be made to connect the absolute invariants /
and J', and corresponds to the modular equation.

For a transformation of even order, we shall have

U
y {x-e,)T^'

equivalent to relations of the form

A^ x— es B^ x— ey G^ .„„.

and therefore

293. In the Weierstrassian form we determine the relation

connecting x= p(u, J) and y= p(ujM, J').

But without altering J' we may write (§ 196)

p{u/M,J') = M^p{'w,J');

and now, if 00, w' denote the real and imaginary half periods of

j»(u, J) or pu, we may take oo/n, 00 as the periods of p{u, J') in

the first real transformation of the 71th order ; and to, ui'ln as

the periods in the second real transformation (Felix Muller, De

transformatione functionum ellipticarum; Berlin, 1867).

The first real transformation, of odd order n, may now be

written

piu,J') = pw+'^i^'[p{u-^-^)-/-^] (40)

similar to equation (30) for the sn function, and obtained in a

similar manner.
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By integration of this equation (§ 195)

^(u,J')= 2GjU+Cu+ f f(u-2s«,/7i,)+ ^(u+2sft)/ft), (41)

where 0-^= ^' i p{2su}/n) = " E p{2swln) ; (42)
S=l 8=1

and integrating again,

log ar{u, J')= G{W^+ log crun a{u— 2su)/n)cr(u+ 2sa)/n),

cr(u, J')= Cefi^^'Vwn ct(u - 2sw/n)cr{u+ 2sw/n)^^ (43)

The constant G is determined by putting u= 0, when

o=ite-«i-=^l^^^n
^

= n-

cru a{u— 2s(oln)a-(u+ 2swln)

1

a-{-2sw/n)(T(2sc6/n)

'

and now

^ '
3=1 cr\2su)ln)

= e^''\(ruyJI{pu-p2swln), (44)

by formula (K) of § 200.

Thus, for instance, with n= S,

<r(u, J') = e^^-Xauf(pu- G,), (45)

where G-^= p^w = p^,
and therefore satisfies the equation of § 149

iGl+ lg^f+ 2g^.
^1-

4>G,'-g^j},-g,
'

or G,*-ig,G,'-g,G,-^\gi= (46)

Denoting by ffj ^^^ ^s ^^^ transformed values of g^ and g^,

they are found by a comparison of coefficients in the expansion

of both sides of equation (44) in ascending powers of u (§ 195).

Thus, if J"=0, or 5-2= 0, then (7^= or ^5-3; and taking the

value
(?i
= 0, then J'= 0, 6^2 = 0, 6?3= -27^3; and

a(u; 0, -27gs)= (<Tufpu (47)

Employing the principle of Homogeneity of § 196, this

equation may be written

cr(uiJ^)=iJ3(crufpu, (48)

leading by differentiation to

iJHi'>^W^)= Hu+p'u/^u (49)

and 3KuiV3)= -3^-+^-^= -P^+^ (^0)

since cr„= 0, as in § 47.
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Thus, if g^ is positive, and ui^, w^ the real and imaginary

half periods (§ 62), then w^jw^^ijd; and if we take u= ^w2,

then p%= ^3 (§§ 166, 233) ; so that J3fft)2'= 0.

Again, putting u= 0)2 in equation (49) gives

'^2'^^/3= 3% (51)

Making use of the last equation of § 202, we find

'/2«2= i'?2''«2' = W\/^-
As a numerical exercise the student may construct the

following table, and also fill in the values for u= w2, oo^', iw.

ift'2' i'«2' I '"2 ; taking gfj= 0, ^3= 1 ; these numerical results

are useful in the problem of the Trajectory for the Cubic Law

of Resistance, discussed in §§ 227-234.

u
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we notice, by § 139, that the absolute invariant J is unchanged;

so that, according to § 68, there are six values of I, given by

l= h.
k 1-k 1-k-r k' 1-k' ^ '"' " k'

and six corresponding linear transformations, in which

A'i_ aK+bK'i
A ~cK+dK'i'

,.(53)

and bG— ad=l; (54)

a,b

c,d
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Landen's Transformation of the Second Order.

296. The point L (§ 28) in iigs. 2 and 3 has been called

Landen's point, because of the use made of it by Landen

{Phil. Trans., 1771, 1775) for his transformation, important

historically as the first case investigated of the Transforma-

tion of Elliptic Functions, being the Quadric Transformation,

or of the second degree.

The ratio ADjAE being sin^^a or k^, while ELjEA = cos a

or K ; therefore, if G is the middle point oi AB,
LG _AL-AC_AE-EL-IAB
GA~ AG ~ IAD

_1— cosa— I sin^a _ ( 1 — cos |a)^_ 1 — cos ^a_ , 21~
Jsin^a sin^^a 1+cos^a

The ratio LGJGA is denoted by X ; so that

''=^. '=U.- '=fT-V ^'=?^'- <'+«W+^)=^.

^X= (1 - k')Ik, Jk'= (1 - X)/X', and k\'= 2J{k'\), . . .(59)

different forms of the modular equation of the second order.

Still denoting the angle ADQ in fig. 2 by 0, we denote the

angle ALQ by i/r ; and now (§ 28) since the velocity of Q
is n{l+K)LQ, perpendicular to GQ, therefore the component

velocity of Q, perpendicular to LQ,

LQ d-^ldt=n{l +k)LQ cos LQG,

or d\{r/dt= n(l+K)cosLQG.

^ , . siaLQG LG ^ ., ,
But since —-.—;— = 7^7^= X, thereiore

sm Y^ GQ,

sin LQG=\ sin yjr, cos LQG=J(l-\sin^y{^) = A{\lA, X);

and dyf^ldt = n{l+ ic')A{\[r, X),

or i/r= am{(l+K>f, X} (60)

Now, since the angle LQG=2(j)— \lr, therefore

sin(20— i/r) = X si ni/r ; (61)

and ,^ l-\^ sm{2^-^)-sm^lr^ ia.n(i>-i^) (o^)

1 + X sm{2,p-\fr) + am^fr tan ^ ^

, , (1 + K:')tan0 ,„„,

*^"^=Wu4' ^^^^

sin i//- = (1 +/c')sin (p cos 4>/A<p,

as in equation (92), § 67.

Tniting nt= u, (1+ K')nt = v, then sin = sum, sini/r= snu;

and we obtain the formulas (90) to (98) of § 67.
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297. Landen starts with the relation (61) ; so that, differen-

tiating logarithmically,

C0t(2^ — \Jr){2d<p — cZl/^) = cot l/r d\p;

2 C0i(2^ — \lr)d(p = {C0t(2^ - \lr) 4- cot \lr}d\lr

_ sin 20 dxff

sini//-sin(20— i/r)

2d(j> _ d\(r

sin 20 cosec •<//• cos(20 — i/r)

Now cos(20- ^) = ^(1 - Xhin^xf,-) = A(^/r, X)

;

while sin 2(p cot 1//-— cos 20 = X,

cot \fr= cot 20+X cosec 20,

cosec^i/r= 1 + (cot 20+ X cosec 20)^,

sin220 cosec2i/' = sii^20-|-(cos 20+ X)2

= l + 2Xcos20+X2
= (l-|-X)2-4Xsin20,

or sin 20 cosec
yJ/-
= {l+X)J(l- K^siii^ip) = (1 + X)A(0, k),

where k= 2^\/(1+X) ; so that, finally,

_d0__Kl +X)^ _dxl^ _(l+K)d^
. ,(.,.

A(4>,K) A(i/^,X) ' A(V-,X) A(0,/c)
'^''^'

so that, if = ani(?ii, k), then yp-= aim{(l+K')nt,X}, and the

angle yp- may be made to represent pendulum motion on the

circle CRL, on CL as diameter, LQ meeting this circle in R.

The velocity of JR will then be due to the level of L', a point

on CU produced, such that CL'= GL/\^; and now we find that

EL'=GL'-GE^EL,

after reduction, so that L and L' are the limiting points of the

circle AQD with respect to the horizontal line through E; but

now the value of g in the motion of R on the circle CRL must,

in accordance with § 20, be reduced to ^g{\ —k'Y-

L'Q L'D_EL+ED _ k'+k'^ _1+k'
,

^^™' LQ'~LD~EL-ED~k'-k^ \-k"

so that (§ 28) the velocity of Q is

n(l+/)iQ, or n{\-K)L'Q (65)

The period of R in the circle CRL is half the period of Q in

the circle AQD; so that, if A denotes the real quarter period

of the elliptic functions of modulus X,

K= \{1 + k')K, or (1 + X)A = Z-. (66)
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298. Conversely, as in § 123, we can express the elliptic

functions of modulus k and argument (1+X)t; in terms of the

elliptic functions of modulus X and argument v; or starting

with the motion of M, we can deduce the motion of Q.

But considering the motion of Q as defining in a similar way
the motion on a larger circle, to a larger modulus y, we change

X into K and k into y, where

_ l-y ,_l-jc _%Jk
"^"l+zc'

(l + y')(l+ic) = 2,1+y" ' \+k' ' 1+k'

jK^{\-y)ly, Jy'^il-ic)/K, and /cV=V'cy'); (67)

and now, from § 123,

1 — K sn\u, k)
dn{l+ K .u, y) =

sn(l+ K:. U, y)=

1 + K sn^(u, k)

(1 + /c)sn (u, k)

1+ K sn2(u, k)

cn(l +k: . %i, y) = -^ '—^—^>" 1+ KS1\\'W, k)

,.(68)

called Landen's Second Transforination.

With x= sn{u,K), y = sn{\+K.u,y), where y= 2^K/(l+K),

then _ {1 + k)x
y~ 1+KX^'

and

1+ y=.(l+x)il+KX)^r,
1- y = {l-x){l-KX)-r-V,

l + yy = il+xjK)^ --F,

l-yy = (l-xjKr -^V,

V=1+KX\
dy (1+ K:)dx

.(69)

V(l -2/M - y'2/') J(l-x^.l- kV)
Or, with x= dn(tt, «), 2/= dn(l+ k.u, k),

-l+K+ X^y=
l+K-

1+2/ =2^ ^F,
l-2/=2(l-cc2) --F;

2/+ y' = 2^x2 -F(l+/c),

F=l+K-a;2;
leading to the differential relation, (3) of § 35,

dy {1+K)dx

.(70)

J{I - 2/2 . 2/2- y'2j V(l -«='•;«'- 'c'2)"
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299. Denoting by V the real quarter-period of the elliptic

tunctions to modulus y, then x= l makes y=l, or tt=^ makes
(l+K)-'tt =r ; so that

(1+0^= r,

or (66)
^

^

(l + X)A=A^=Kl + y')r (71)
Also, A', K', r' denoting the corresponding quarter periods to

modulus X', K, y, the imaginary transformations of § 2-38 show
that, with iu = v,

(l+.'.r.V) =^?-^K;,l+/csn2(ti, k)

sn(l+^ _^ '^JA+'c>niv,K')cn(v,,')

dn(t!, K )

1+Ksn\v, k)

,-, ,
,, I — (l-|-/c)sn2(-y, /(•')

cn(l+K .v,y)= A / '\
—

•

dn(l +K . V, X ) =
T ,

, „;
'

,

^°(^+'^
• ^' ^)= dn(^,0

' ('2>

so that A' = (l+/c')K', r' = |(l+/c)K',

Of Hl+X)A' = K'=(l+y')r; (73)

and therefore
| :^=J = 2^ (74)

An inspection of Landen's formulas shows that the dn func-

tion has always a rational Quadric Transformation.

Mr. R. Russell shows {Proc. L. M. S., XVIII.) that the

general rational quadric transformations which reduce

dx/JX to the form dz/^{Az*+6Cz^+E)
are always of the form

,etc (75)
'mP2'^'"'P3

m'P^+n'P^

Pj, Pg, Pg denoting the quadratic factors of 0, the sextie

covariant ofX (§ 160).

Thus if X=l-x^.l-K^x\

the sextie covariant may be written

G=x{\-Kx'){l+Kx'),

leading to Landen's transformations, given above.
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300. Landen's Transformation is useful, as employed by
Gauss, for the numerical calculation ofK ; for if we put (fig. 2)

LA = a, LD= h; and GA = a^, GL= J{a^-h^)= \{a-h);

then ai = |(a+ 6), h.^ = J{ah); and K=b/a, X' = bjaj. ...(76)

Now, denoting i//- by 0^, and X by k^, equation (64) becomes

while ^1 = TT, when ^ = ^tt ;

so that

V(a'co.sV+ &^sinV) V V(«i'cosVx+

=/;

'cos^^j+ 6j^sin^0j

)

or K=Kj^ci/a^= K^{l+ K;) (78)

Continuing this process with ^^, a-^, and b-^, so as to obtain a

continuous series, given by (§ 296, equation 62),

tan(9i„-^„+i)= -^tan ^n,

a„+i = |(a„+6„), 6n+i = V(«A); (79)

then an and 6„ tend to equality ; so that, putting

<^^=K=f^' and ^„=i^,

J J{a^cos^^ + bhin^^) J V(a„^cos2^„+ ^^^sin^^^)

»/ V

K= KjlL{l+Kr) = h7rnll+Kr) (80)
r=l r=l

Denoting the modular angle. of /c„ by 0„, then

Kn+i= sin 6n+i = tan^ J0„

;

cos On+i = sec^ i0„V(cos 0„),

and 1 + ^„+i = sec^ ^9n = ^^^^-,

'

so that

-K'= Jtt sec 0^{coa 9 cos 0j cos Qg cos O3 . . .), (84)

a formula suitable for the logarithmic calculation of K.
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The Transformation of the Third Order, and of higher
Orders.

301. According to Jacobi's method, the transformation may
be written

l+y l+x\l+ axJ
' ^^^-'

connecting a;= sn(tt, k) and y= sa{u/iV, A) ; and then

_

2a+l + a^x^ X 1-x^/a^
^ 'l+{a'+ 2a)x^~M l-^^aV' (^^)

so that l/ilf=2a+ l,

and l-^y_l-Kx/a-KX\
l + Xy i+KX\a+ KxJ'

*"*''

leading to the differential relation

% _ (2a+l)dx_^
J(l - 2/M - XY) "^{l-x^.l- A^) (^^)

We shall find that, expressed in terms of a.

2_a*+ 2a3 ^2 /a+ 2
" =^^+1' ^'= «V2^1

l + 2a ' ^ ~ lT2^ '

leading to the Modular Equation of the Third Order.

x/(^X)+ V('c'V)=l (86)
We shall also find that this transformation maj' be written

1 - cn(u/M, X) ^ 1 - en it /g+ 1 + g en uV
1+ cnlu/M, X)~ 1 + en u\a+ l- a en uJ'

^^"^

1-dn (n/M, X)_ 1-dn ufa+l + duuV
i+ du(u/M, X)~ 1 + dn wVa+ 1 - dnJ ^^^^

As a numerical exercise the student may work out the case

of a = Kx/3-l).
In Legendre's notation, with a;= sin^, y = sm\lr, he finds

that these relations are equivalent to

tan J(^+ i/r)= (a+ l)tan^ (89)

The Transformation of the Third Order was the highest to

which Legendre attained, until it was pointed out by Jacobi

in the Astronomische Nachrichten, No. 123, 1827, that Trans-

formations exist of the fourth, fifth, or any other higher order,

as already explained.
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Thus the transformation of the fifth order may be written

1-y ^ l-x /l-ax+^xy ,QQ.

1+ y l+x\l+ax+ l3xy ^ ^

and of the seventh order

l — y _l—x/ l — ax+ ^x^— yx^\^
(-91 \

l+y~l+x\l+ ax+ ^x^+ yxy ' ^ ^

and so on.

302. When the transformation of the third order in § 157 is

employed for the reduction of the integral in equation (6), § 227,

then 8^= -K^/P^ (92)

where P=p^-3p^sm^a+ 2p. (93)

and ^=^^cos^a+psin a — 1, (94)

as in equation (27), § 233 ; so that K=0 and s= at the points

of minimum velocity.

Now, with this substitution of § 1-57,

s=p(gx/w^; 0, -A), (95)

where A = 4- 3 sin^a = 27^3, (96)

(§ 228) ; and denoting

fdsfdsjJ(^8^+ A) by Q„ ffi, by H^;

then ^fQ2 = 0, p'ii^^=-JA, and H^Q^ = ^-tt^3 (% 293).

Again (§ 157), p'igx/'uf') = J/P,

where J=p\3 sin a— 2 sin^a) — Sp^{2 — sin^a)+ 3p sin a— 2,

and J+P^A = 2{l(sina+JA)p-l}\
J-PjA = 2{^isina-^A)p-lf (97)

Now from § 233,

^A = cos a(tan /3+ cot /3),

|(sin a+VA) = J cos a(tan a+ tan j8+ cot /3) = cos a tan p,

J(sin a— ^A)= \ cos a(tan a— tan /3— cot |8)= — cos a cot ;8,

, ., sin Q
while p =—7

HT"^ cos(a — Q)

Therefore

[
p\u; 0, -A)-^'|lJ,\i

^

(
J+JAP\l

^

Ksm«+VA)p-l
\<p\u ; 0, - A)+ p'i^J _

\J-jap) Ksin a - JA)p-^
_ cos a tan fi sin Q— cos(a— 6)_ tan(3 ~Q) _ ^3^1 ^
— cos a cot;8 sin — cos(a— 0)~ tan^S "tan^S

=feAfl^^fe,orT (98)

(§ 234) a curious result of this transformation.
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Again, since g''-§(02= —&'iw2, we may put

and then, making use of relation (17) of § 229,

„_ cr(^a)2+ u)a-(^a)W2+ u)g-(^a)^a)2+ tt)

~
o-(-|w2— u)cr(f£00)2~ '")cr(ia)''^<02— u)

^ tr(|a)2+^)g-\f(02-^)F(f«2-^)

(7(^0)2- V')<r\iw^+ '")F(f«2+ «)

by means of (K) § 200, and the relation ^§£02'= 0; and this

again, by equation (CC) § 279 and by § 293, reduces to

^ 0<|w2j2UK/3)giV«V3
o-Cfwa'+wi^S)

CrdQa
—

•"'i 0, — A) 4g^^ /ggx

~(7(§f22+u; 0, -A) '

The Transformation of ike Theta Functions.

303. Taking the function, as defined in §§ 263, 265 in the

factorial form,

e{x, q)= 4,(q)JI(l-2q''-^cos 2x+ q''-^) (100)

where <p(q) is a certain function of q which § 264 shows can be

written ^(?) =n(l-gn (^^l)

then changing x into nx, and q into g",

d{nx, g")= 0(g")n(l - 2g2«'- - "cos 2nx+ g*"''
' 2")

= d.(g"Jn '
ff '{ 1 - ^^'' ' 'cos(2a;+ 2s-7r/n)+ g*"- ^}

1=1 s=0

(by Cotes's Theorem of the Circle of § 270)

= ^M_'=ffV^+sW^, q) (102)

{0(g)}" ,=0

Similarly, with fi= l, 2, 3,

0M(«a;,9")=:{||^rnW+STK?) (10^)

Forming the quotients, and writing x for ^ttu/K, then (§ 263)

and thence we obtain the formulas for the Transformation of

the Elliptic Functions of § 283.
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Similar considerations will show that, when q is changed to

qVn or e^pTTi/M^ji/ti

where
fj.
= 0, 1, 2, 3; this is left as an exercise (Enneper,

Elliptiscke Fundionen, § 38).

Examples.

1. Prove that a transformation of the fourth order is

l —y_l — x
_
1— kx/\--XjJk^

1+2/ 1+x 1 +kx\\+x^k/
'

and prove that the relation between X and k is then

and M={\ + jKf.
2. Prove that, by means of the substitutions

tan le-
cosh^usinh</>

^

" ^(cosh u+ sinh u cosh ^)

. 1 „ cosh ill sinh d>

sinh Jm + cosh Jucosh^

J Sî(cosh w+sinh u cosh
<f)

'T^yjccoshtf+cosg)
^^^"^ iu^,(sech Ju).

/"" cosh m0 c?(^

^(cosh tt+sinh w cosh ^)"+i

1.3. 5...2m—l 1 /-^ (sinh 'm,)™cos to0 cZg

~2TO-1.2TO-3;..27i-2m-l ^y (cosh w+ cos 0)"+*'

3. Prove that, with the ho7)iogeneous variables x^, ccj of § 155,

and writing X.^ for dX/dx^, X^ for dX/dx^, the general cubic

transformation which reduces dx/^^X to the form

is of the form z= (lX^+ mX^)/{l'X-^+ m'X^) (ex. 8, p. 174).

Prove also that the general quartic transformation may be

written z= {lX+ mH)/{l'X+m'H),

where H denotes the Hessian of the quartic X (§ 75).

(R. Russell, Proc. L. M. 8., vol. XVIII.)
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4. Prove that (Cayley)

y~l + 2px^+1x''+ px^

satisfies the relation

dy _ pdx

Modular Equations.

304. In the Transformations of the nih order, which con-

nect the Elliptic Functions of modulus X with those of

modulus K, and make r= q", or q^l^, or w^q'-^'^ (§ 285),

A';' K'i 1 K'i 2pK+K'i ,, .aK+hK'i ,.,,„^
—i-=n-^f^,ov ^y^,ox-^—~ .orgenerally „

,

,„.„(1Ud)
A A n K nK ^ •' cK+dKi

where he— ad= n,

the Modular Equation, which determines X in terms ot k, is of

the ('n+l)th order, as already stated, when n is prime, and

has two real and n—1 imaginary roots.

We shall content ourselves with merely stating the Modular

Equations of simple order, connecting k, X and k, X', adopting

the form and classification employed by Mr. R. Russell in the

Proc. London Math. Society, Vol. XXT,

Class I. to = 15, mod. 16

;

Q= -^(/cx k'X')+ 4/(kX)+ 4/(/c'x'),

n = 15, P^-4:PQ+R= 0.

-rt = 31, (P^-iQf-PR= 0.

7? = 47, P2-4Q-P(i?)*-2(i?)§= 0.

Class II. to= 7, mod. 16;

P=^(K\)+^{K'\')-i.,

Q= ^{k\ k'X')- ^(kX)- 4/{kX'),

R=-4>^/{kXk'X').

71= 7, P= 0, or 4/(/cX)+4/(/X') = l, (Guetzlaft-).

71= 23, P-i2i = 0, or 4/(/cX)+ 4/(/c'X')^(256/cX/X')^'^=l.

w= 7l, P3-4Pi(P2-Q)+ 2Piit-i?=0.

•>?.= 119, P«-Ei(7P5-28P3Q+16PQ2) + P«(...)... = 0.
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Class III. n= 3, mod. 8

;

P=J{k\)+ J{k'\')-\,

Q = J{kX k'X) - JiKX) -J {k'X'),

R=-16J{k\k'\').
n=-S, P= 0, or J{k\)+ s/(k\')=1, (Legendre).

71= 11, P-Bi= 0, or ^(K\) + ^(K'X')+ {256K\K\f^l.

n= 19, P'-7Pm+l6QR=0.
n= 35, P*- E*(6P3-

1

6PQ)+ 2R^P^-RP-I^= 0.

71 = 43,
pii+... = 0.

n = od, P^ +...=().

71= 83, P7+...=0.

Class IV. n = 1, mod. 4

;

P= k\+ kX'-1,

Q= kX k'X — kX — kX,

R= — 32 kX k X

.

71=1, P = 0.

11 = 9, P«-14P3P+ 64PQP-3P2= 0.

71= 17, P3-P*(10P2-64Q)+ 26i2*P+12ii= 0.

71= 41,

71= 5, P-Ri = 0, or /cX+k'X'+ (32kX/c'V)*=1.

71 = 1.3, Pi(P3+ 8P)±P*(llP2-64Q)= 0.

71 = 29, pi(P2+ 17P*P-9P8)
±J?*(9P2-64(3-13P*P+15^^)= 0.

71= 37,

71 = 53, p4{P*+ iJ*(413P3-2i''PQ)+ ...}±i?*{3.5P*...}=0.

305. According to Professor Klein (Proc. L. M. 8., X. ; Math.

Ann., XIV.) these Modular Equations are replaced by relations

between tlie absolute invariant J and its transformed value /',

by the intermediate of quantities t and t', such that J" is a

certain function of t, and J' the same function of t' ; and now,

71 = 2; /:/-l:l= (4T-iy : (t-1)(8t+1)^: 27t,

tt'=1 (§60).

71 = 3; /:/-l:l= (t-1)(9t-1)^: (27t2-18t-1)^:-64t,

tt' = I

.

71= 4; J:J"-l:l= (tH14t+1)^:

(r^-33T^-33T+l)2: IOSt(I-t)*,

t+ t' = 1.
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n= o; ,/: J-l:l= (t2-10t+5/
:(^2_22T+ l25)(T2-4T-l)2:-1728r,

tt' = 12o.

n= 7; /:/-!: 1= (t2+13t+49)(tHot+1)*
: (t*+14tH63tH70t-7)°: 1728t,

tt'= 49.

n = 13; J:J-1:1= (t2+ 5t+ 13Xt^+ 7tH20t'''+ 19t+1)^

:(t2+6t+13)(t'+10t^+46t*+108t^+122t'+38t-1)2:1728t,

tt' = 13.

The Multiplication of Elliptic Functions.

306. If we perform the second real transformation upon the

first real transformation, we obtain a transformation of the

order n\ leading back again to the original modulus k ; because

the first real transformation changes q into g" and the second

real transformation changes g" back again to q.

We then obtain the elliptic functions of argument

u/MM =nu, since M =K/n-A, M'=A/K,
in terms of the elliptic functions of argument u, by a trans-

formation of the order n^, and thus obtain the formulas for

Multiplication of the argument.

Thus multiplication by 2 or 3 can be obtained by two suc-

cessive transformations of the second or third order ; and so on.

Knowing that the order of the transformation is n^, we
infer in Abel's manner the factors of the numerator and

denominator of the transformation, involving the Tnodular

functions, the elliptic functions of the nth. part of the periods.

Thus we infer, with the notation of § 258, that, for an odd

value of n,

snnu=U/V, (107)

(SU it \
1

9f^/ ).
Rn^li/n/

\ sn'^iljn/

n'n'(l - K^sn^u snm/n),

where m, m'=0, ±1, ±2, ±3,..., ±^(n— l)[

the simultaneous zero values of m and m' being excluded,

as denoted by the accents, so that the number of factors is
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Combining the factors by formula (7) of § 137,

snnu =Asnu n'n'sn(u+ Q/'n.)sn {u — Q/n), (1 08)

where ^ is a constant factor ; and this may be written

sn nu=A ILUsniu+ Q/n) ; (109)

where m, m'= 0, ±1, ±2, ..., ±^{n— l);

the simultaneous zero values of m and m' being now admissible.

Similar considerations will show that

cnnu= BILIi.cn{u+nin), (110)

dnnit=CIindn(tt+fi/7i) (Ill)

To determine the constant factors, change u into u+K ov

u+K'i, when we shall find (Cayley. Elliptic Functions, § 368)

^ = (-l)«''-i)^«™2-i), £= (^/^')i(™^-i)^ C'=(l//c')«'''-i>.

By taking in § 259 a rectangle OA„BnCn, in which OAn= na,

OBn= nb, and therefore containing n'^ elementary rectangles,,

we obtain a physical representation of the formulas (109),

(110), (111) for Multiplication of the argument by n.

Writing u/n for u, and making n indefinitely great, we

deduce in a rigorous manner the doubly factorial expressions

for sn-ii, cnu, dnu in (1), (2), (3) of § 258.

Again, by putting /c= or /c = 1, the student may deduce as

an exercise the trigonometrical formulas for the resolution of

the circular and hyperbolic functions into factors.

(Hobson, Trigpnometry, Chap. XVII.)

The Complex Multiplication of Elliptic Functions.

307. When K'jK= iJD, and B is an integer, we may sup-

pose the multiplier n resolved, by the solution of the Pellian

equation, into two complementary imaginary factors, so that

n= {a+ih^D){a-ihJB)= a^+W'D;

and now the multiplication by n can be effected by two suc-

cessive multiplications by the complex multipliers a-\-ih^D

and a— ih^D, each leading to an imaginary transformation of

the Tith order, not changing q or the modulus k.

(Abel, (Euvres, I., p. 377 ; Jacobi, WerJce, I., p. 489.)

The first requirement then in Complex Multiplication is a

knowledge of the value of k for which K'/K=y/D ; and this

is found by putting k = \', k'= \ in the corresponding Modular

Equation of the order jD (§ 304).

The equation is now, according to Abel, always solvable

algebraically by radicals ; so that, returning to the question of
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the pendulum in § 15, it is possible to determine by a geometri-

cal construction the position of two horizontal BB', hV, as in

fig. 1, cutting off arcs below them, such that the period of swing

from B to B' is ^-D times the period from h to h'.

Thus the Modular Equation of the second order being

written X= (l -«:')/(! +0.
we find, on putting k = X,

X2-|-2X = 1, or X = V2-1, when A7A=V2-
Putting /c= X', k'= \ in the Modular Equation of the third:

order (§ 304),

2J(kk') = 1, or 2/<:/c'=i = sin^-n-, when K'jK^JZ;
so that the modular angle is -^-r^ir or 1.5°.

When K'IK= 2, k= {j\ - 1)M§ 71)

;

obtained by putting r7r= l, y = y'= \J1 in §§ 298, 299.

When K'IK=Jo, 2KK=Jb-% 4/(2,c<c')=K-v/5-l),

or (2«:/c')-*-(2/c«:')* = l-

When K'IK=J1, 2^{kk')=\, 2KK' = h ^{2kk')=L

Collections of these singular moduli required in Complex

Multiplication are given by Kronecker in the Berlin Sitz.,

1857, 1862, in the Proc. L. M. S., XIX., p. 301 ; also by Kiepert

in the Math. Ann., XXVI., XXXIX., and by H. Weber in his.

Elliptische Functionen, 1891.

308. In the expression of y = sn{a+ ib^D)u as a rational

function of a;= sn u, leading to the differential relation

-7rr-^f-^^=-7n P; ^v ^^^^re l/M=a+ibJI),

Jacobi finds ( Werke, t. 1. ; de multiplicatione fanctionum,

ellipticarum per quantitatem i'maginariam pro certo quodam

viodulorum systemate) that we must restrict a to be an odd

integer, and b to be an even integer; but these restrictions,

disappear if we work with the en functions; and we can

even suppose that 2a and 26 are odd integers.

Let us determine then the relations connecting

a;= cn ii and y= cn^{— l+ii^D)u,

so that ljM= - 1 + hWJ^'
leading to the differential relation

dy _ {-i+hWD)d.r

where c= k'/k, the cotangent of the modular angle.
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If -0=471—1, and we denote (K+K'i)/n by w, we shall

then find that, when n is odd,

1-y _ 11 . >l-x''=«i-iY^-cn_2noy
2^--x/Wx+^ ii^

Va;+cn2m/'

1+5

ic

hut, when % is even.

1 +
"

~=-J{'i^)^r-, n (—

;

s

—

ic ic

^=V(*c)ni—^

77^
ir^y (113)

-. y^ ^^ '
ta;+ cn(2r— l)ft)J

'

ic

The arithmetical verification for the simple cases of i)= 3,

7, or 15 is left as an exercise for the student {Proc. Gam.

Phil. Society, Vol. V.).

Formulas (112) and (113) are inferred by putting

(1) 2/ = l,

when j( — 1 + iiJD)u= 27nK+ 2mK'i (in+m' even)

;

and then u= 4im'K— (m

+

7n')(,), x= cn 2rw.

(2) t/=-l,

J( — 1 + iy/D)u = 2mK+ 2m'K'i (m+ m' odd)

;

-and then a;= cn(2r— l)ft).

(3) 2/ = ic,

-K-l+'iV-D)w= (2m+ l)Z+(2m'+ l)^'i (m+m'odd);
tt = (4m'+2).K"-(m+ m'+ l)(o, a:;=-cn2rft).

(4) y=-ic,

K - 1 + tx/-0)i(.= (2m+ l)ir+(2m'+ 1)^'^ (m+m' even);

and then x= — cn(2r— l)a).

309. When B — in+ l or 1, mod. 4, the relation connecting

« = enu and y = cn^{— l+ iy/D)u cannot be rational ; but Mr.

G. H. Stuart has shown (Q. J. M., Vol. XX.) that it may be

written in the irrational form

- /r \ lf
'ic+ xyf^cn{2r -l)a>-x

y - s/WyJ \i^i:a:)rt\cn{2r-l)w+x'
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where (o= (K+K'i)/{2n+ l),

a transformation of the order n+^; and this is equivalent to

i-s,==a-i.Xi_,)n(i--J|JVy.

this is inferred in the same mamier as formulas (111) and (112).

For instance, with n = 0, D= l, and K= i^2, c = l

;

enK-l+i).=V«V(:^3
equivalent to, with u= {l+ i)v,

,, .. .1— ien^r
cn(l - i)'i;= ^-—-.—^•

l + icn^i'

Withw=l,i) = 5, 2kk' = ^5-2,c = J5 + 2+2^(J5+ 2),

;/i+^\i-^
and cn^(-l + i^/o)u = ^(ic) \-^\ ^.

fj \l-f/l+^

where a = en ^{K+K'i).

310. Generally in the expression oi y = fXijM as a function

of x= ipu, where
w'/ft, or K'i^K=J{-B),

and the multiplier IjM is complex, of the form

llM= a+hJ{-D),
it is convenient to consider four classes of D.

Class A, D = 8, mod. 8;

Class B, Z) = 7, mod. 8;

Class C, D = \, mod. 4
;

Class D, D=2, mod. 4;

the class for D = 0, mod. 4, not requiring separate consideration.

It is convenient also to consider the discriminant Z) (§ 53) as

negative ; a change to a positive discriminant being effected by

the method of § 59 ; now w^lw^ = %ijl).

We can also normalize the integrals (§§ 196, 252) by taking

gi-2ng^= -1, so that g. = ^{-J).
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Class A. D = 3, mod. 8 = 8p + 3 or 4tc-1, iin= 2p+l.

The relation connecting x and y can be written in one of

the three equivalent forms

r = l

y— e^= M'^{x— e^ 11 {x— ip{ui^—2TooJn)Y-r-V,

y-e^= M^{x-e^) 11 {x-'p{u,^+ 2ru,Jn)}^-^V,

F= Jl{x-f{2rwjn)};

leading to the differential relation

Mdy _ dx

Ji'^y^- diV- 9s)
~ ^(.4:x^- g^a^- gs)

This verifies in the particular case of p= 0, when

n= B, J=0, g,= 0, l/M = ii-l+ij3)=m;
and then e-^ = m,e2, e^=m\.

This is the simplest case of Complex Multiplication,

mentioned in § 196, and employed in § 227 in the determina-

tion of the Trajectory for the cubic law of resistance.

The form of the general transformation is inferred from the

consideration of the series of values of u which make

y or p{u/M) = e^, e^, e^, and qo .

(i.) When y = e-^,

'M,/l/= (2g+ l)ft,j+ 2ra)3

'>^={{q+r+i)w,-(q-r+ i)oo,'}/{-i+ii^I))

_ -g--)'—1— (g-r+-|)(4ri.-l) q+r+j;-q+r~^ ,

2n ^
'in ''

'

= — ig'cog+ 2r(02~ <«2~ ''("'2+ '^i)!'^

= — 2qw2+ 2rft)2— tOg— 2roojn,

so that X or ^u^e.^^ or ^{w2+2r<joJn).

(ii.) When 2/= 62,
'

u/M=(2g+ l)coi+ (2r+ lV3
= {q+ r+l)i02~{q-r)w2,

u= —2qoo2+ '2,rw2— i2r+l)o}Jn,

fu = e^, or f{2r+V)wJn = f{ui^— 2ru)Jn).
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(iii.) When y= e^,

= {q+ r+l)wz-{q-r-l)w^,
u= — 2g'a)2+2''ft'2— ftjg— (2r— l)wjn,

j3U= ei, or p{w2+{2r—l)ooJn} or ^{wi+ iirwjn).

(iv.) When 2/ = qo ,

tt/Jlf=2g'a)i+ 2rco3

= (9+ r)(02- (9-^)0)2',

u= — 25-0)2+ 2rw.,+ 2rwjn,

and pu= ^{2ra)Jn).

Hence the form of the Transformation is inferred.

By addition, we find

where ')i= 2p+l ; and we shall find that A-^=2G-^; and the

A's and G's are symmetrical functions of Cj, e^, e^, and there-

fore functions of g.^, g^oi J; while G-^ has the same significa-

tion as in § 293.

By employing the Modular Equations given above, or

employing Hermite's results {Theorie des equations modu-

laires), we find

D=3, J=0. g,= 0. v/(?2+l) = l, gs= is/S-

n_ii r_ 2» _8 _7s/n.

A,=2G,= -Kjn+i), ^2=^^-^^A A=-^^'''-
i) =19, J-=-2«, sr2= 8, V(^2-M) = 3, g^= Jl9;
A^ = 2G^= -^19-i, ^, = K25 -1-5^19). ^3= -KN/19^-6^).

^=K2i-F9iVi9). ^5=-Mn/i9+ii^);
these values of A^, A^, A^, A^ were calculated by Rev. J.

Chevallier, Fellow of New College, Oxford, who has also

verified the case of i)= l].

D =27, /=-29x5»-^32, etc.

D =35, ^2=W5{KV5+ 1)}*> 9^2+1 = Ki(>/5+ l)}'-

D =43, /=-2i2x53, ^2= 80, x/(9'2+l)= 3',

^3=3x7x^43 (Hermite).

A^= 2G^= -6(^i3+i), (?2= 4(279 -I-1HV43),

^2=10ol-f73iV43, etc.

D =51. J'=-64(.5+ Vl7)Wl7-l-4)2 (Kiepert).
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B =67, J=-2^xo^xm g, = UO, J(g^+l)= 3x1,

^3= 7x31x^67 (Hermite).

D =163, J'=-2i2x53x233x29^ ^(g^+l}=dx'I xll,

(/3=7x 11x19x127x^163 (Hermite).

Class B. i) = 7, mod. 8 = 8p+ 7 = in-l,iin = 2p + 2.

The relations connecting y= ^{u/M) and x = ^u, where

l/M=-i+ ^i^D,

are found, in a manner similar to that employed in Class A

;

r=p

y — e^=M\x— e.^{x— e^ 11 {x— <p{w2+ 2rw^ln)}^^V,
r = \

y-e,= ilf2 lf{a;-^(ft,3-2rft,3/7i)}2^ F,
r=0

y-e^= M^'^lf{x-^(wj^+-2rw^n)Y^^r,
r=0

7= {x-eyU{x-p(2rwJn)}\
r=l

As simple numerical applications,

1 5* 5 ^7D= 7, 2K/c' = g, J=--^^, 92= ^, 5'2= -y-'

ei = i(-V7+*), «2=W7, e3= i(-V7-'i).

i)= 15, ^K/c' = sin 18° (Joubert).

In these cases the Jacobian notation is almost more simple,

as given in § 308.

Class C. D^l, mod. 4i= 4tc+1.

The relations connecting x= pu and y= f{u/M), where

cannot now be rational; but, according to Mr. G. H. Stuart,

we can express the relations in the irrational form

/ 4r + 1 N

y-pW^ ^<c-ej ,=1 ( 4r+l \'

^~^V 2to+ i"'V

a relation which may be said to be of the order 71+^; and

this is equivalent to

{y-e,){y-e,) _ -^^^^(si!^
^_e, -^^^ '^^^y j^r+1

V'^-^K^^r^)]
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Class D. Z) an even number.

In this class the simplest function to employ is the sn func-

tion ; for instance, with

K'/K^J2, then k = J2-1;
sxx'u

and sn(l+i^2)u = {l+i^2)snu-
., 00 ^

> '

^ -v / \ -v 1— K'^sn''2cosn-('

where 03 = ^(K— iK')
;

leading to the equations

1^ ^
1 — 1/ _ 1 + kxI sn o)

'

1+2/ 1 ~ i^A. 1 j_ '^

\ sno)/

\—Ky_ 1 —x/\+kx snto)
connecting a;= snu and y = sa{\-\-i^2)u.

Also sn.u3= ij{ — i), sn^2(ri = "^.^ _ - •

These transformations show that it is not possible to express

cn(l+i^2)u. in terms of cnu, or dn(l+i^2)w in terms of w,

by a rational transformation.

With7i7^=2, then K= {J2-lf (§71),

and the relation connecting a- = sntt and ?/= sn(l + 2i)i(, may

be written

_ „. V sn"^2co/V sn24a)/

2/ - (1 + ^ i}x^^ _ ^,2^23n22a,)(l - K^x'sn'^u,)

where oj = \{K—iK') ;

equivalent to the relations

sn Oft) I'[ —y _\ — kx[ snw

l+^~l+,cx-l jc_l Ij X

\ snw/ \ sn 3ft)/

'1 ^T \ /1 +
l —Ky_l-x sn 2ft) j

/sn4ft)

sn 2ft)/ \ sn 4ft)/

so that cn(l + 2i)M. has a factor dnii, and dn(l + 2;)M has a

factor en u.

G.E.F. T
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When K'lK^jQ, then k= (^3 - x/2)(2- ^3)

;

and the corresponding relation between snu andsn(l+i^6)u
to be written down is left as an exercise.

{Froc. Gam. Phil. Soc, Vols. IV., V.)

It can also be shown, in the preceding manner, that the

relation connecting x= <pu and y = ip{ujM) where

llM=-\+iJD,
and D is an even number 2m, can be expressed by the relations

r=m.C / 2r 1 \1^
y-e^=M\x- e^) IL^\x-

&[^;^^^^:i
to/

j J
^ F,

y-e^= M%x-e^)IL^x-^(w^-^;^^^u,^)j -r-F,

y-e^=M\x- 63) n ja;- ^3(0,1- ^^j^'^^)] "^ 1^-

^= n{.-,(^»,')}-

As numerical exercises, we may take

(i.) i) = 2, when g,= ZO, g^=^S, G^=-l + ^ij2;

(ii.) i)= 4, when g'2= ll' 9i= '^' G-^= —'2.+ i.

311. In conclusion we may quote from Schwarz some

general remarks on doubly periodic functions.

Every analytic function ^u of a single variable w for which

an algebraical relation connects ^(u+ v) with ^u and (jiv is

said to have an Algebraical Addition Theorem ; and then <f,'u

must be an algebraical function of (pu (Chap. V.).

Every such function is then an algebraical function, or an

exponential function (circular or hyperbolic function), or an

elliptic function, which can be expressed rationally by fu and

p'u (Chap. VII.).

Elliptic functions are doubly periodic. A function of a

single variable cannot have more than two distinct periods,

one real and one imaginary, or both complex. For if a third

period was possible, the three sets of period parallelograms

obtained by taking the periods in pairs would reach every

point of the plane, so tbat the function would have the same

value at all points of the plane, and would therefore reduce to

•a constant (Bertrand, Galcid integral, p. 602).
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Abel, in generalising these theorems, was led to the discovery

of the hyperelliptic and Abelian functions.

Thus ifX in § 1 69 is of the fifth or sixth degree, we obtain

functions of 2 variables and 4 periods ; if of the 7th or 8th

degree, of 3 variables and 6 periods; and generally, if X
is of the degree 2^+ 1 or 2p+2, there are p variables and

•Ip periods ; but this would lead us beyond the scope of the

present treatise, and the reader who wishes to follow up this

development is recommended to study Professor Klein's articles

" Eyperelliptische Sigmafunctionen" Math. Ann., XXVIL,

XXXIIL, etc.
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I. Tke Apsidal Angle in the small oscillations of a Top.

The expression given by Bravais in Note VII. of Lagrange's

Mdcanique analytique, t. II., p. 352, for the apsidal angle in

the small oscillations of a Spherical Pendulum about its lowest

position is readily extended to the more general case of the

Top or Gyrostat, if we employ the expression on p. 261, § 242,

as the basis of our approximation.

We divide the apsidal angle "^ into two parts, ^^ and 'i'^,

such that -i"^! = ttj/i— ftj^fa,

and now put a= ojg— swg, 6 = Wj+ qw^,

where q and s are small numbers; so that, expanding by

Taylor's Theorem as far as the first powers of q and s, we may
put ^a:si;73+ Sft)3j3a)3 = 173+80)363,

f ?> :r ;/!
- gwgfjft)!= j/i

- ^0)361

;

and now, by means of Legendre's relation of p. 209,

i^^ -tSi (0)3— So}^)>]^— w^(ri^+ sw^e^) = Jix- Sa)g{ri^ + ggftji),

i%^ (oji+ qois)'!!- i^iivi- qoa^i)= quisW+ «ift>i)-

But, from equation (B), § .51,

^ ^ ' •>' fu— e^ pu— e^

^1~% *i~ ^3

so that, integrating between the limits and oo^

ejcoi+ ^(wi+ wg) - fc«3= (ej - fijyduVC^i- 63)%^^,

or ,;j + 6^0)1= ^(Cj— eg)£' (Schwarz, § 29).

Also (§ 51) (ei - 63)0,1= V(ei- 63)^ J

so that ;,!+ egtoj = - J{e^ - e^){K- E)
;

and therefore i^^= i^tt+ sui^J{p^- e^){K- E)

,

i%= qo,^J{c^-e^)E.
340
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But, from § 210, when a and /3 are very nearly tt, their

approximate values are given by

since P"«3=2(e,-e3)(e,-e3),

and ^2=Vl^^ /2= ?i^l2 «52);

'2

and therefore (gj- e^)s^u)^^^ -^ cot^ J« cot^ ^^8.

Also (§ 210)

<?+ (?? — ja'a — jaXwg— SW3)

_ qw^f"u>^ _ g ^1 - ^2_ g '^'^

so that (ei-e3)?V^ " (§^)'^ cot^a cot^ J^.

TZ jp
Therefore ^i?:i J 7r+

—

^^kco\, \a cot \^,

TTTjrj -7 cot i-a cot J/3.

But, ultimately, when k= and k = 1,

then E=W, and lt(ir-^)/,c2= 47r (§11,170);

so that ^1 :r ^TT+ Itt cot |a cot J/3,

/G— Cr\

This reduces for the Spherical Pendulum, in which Cr=0, to

*• :s: jTr(l +# cot Ja cot Jj8) :2i J-!r(l + 1 sin a sin j8),

when a and ^ are nearly tt, thus agreeing with Bravais's result.

When a = Tr and G+ Cr= 0, this approximation fails; but

the student may now prove that the apsidal angle is

This will be the apsidal angle when the Top is spinning in

the vertical position with small angular velocity r, and is then

struck with a slight horizontal blow.
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II. The Motion of a Solid ofRevolution in infinite friction-

less liquid.

The reductions of the Elliptic Integral of the Third Kind

in § 282 in consequence of the relation

in connexion with the Top and Spherical Pendulum, are useful

also in constructing degenerate cases of the motion of a Solid

of Revolution in infinite liquid, as mentioned in § 211.

We refer to Basset's Hydrodynamics, Vol. I., Chapters

VIII., IX., and Appendix III., also to Halphen's Fonctions

elliptiques, II., Chap. IV., for an explanation of the notation

;

and now T the kinetic energy of the system due to the

component velocities u, v, w of the centre of the body along

rectangular axes OA, OB, 00, fixed in the body, 00 being the

axis of figure, and to component angular velocities j9, q,r about

OA, OB, 00 is given by

T=iP{u^+ v^)+ iRtv^+ ^A{p^+q'')+ iCr^ (A)

(to which the terms

P'{up+ vq) +P'wr

may be added in the case of a body like a four-bladed screw

propeller, or like a rifled projectile provided with studs or

spiral convolutions on the exterior).

Then the Hamiltonian equations of motion are

d^T dT^ dT „

d-bT_ dT <3T_

dtdv ^dw'^'^du~ ' ^^^

ddT dT
,
dT „

dtd^-1^+P^-Z, (3)

ddT dT
,

dT dT
,

dT ^

^«3^-^3^+^3^-^§^+^3^= ^' W
d dT dT

,
dT dT dT „

dtdq-^dr dp dw du ^

ddT dT
^
dT dT

,
dT ,^

dtd^-^d^+Pd^-'^d^+'^d^-^- ^^)

When no forces act, so that X, Y, Z, L, M, N vanish, then

equation (6) shows that Or or r is constant.

Multiplying equations (1) to (6) by u, v, lu, p, q, r in order,

adding and integrating, shows that T in (A) is constant.
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Multiplying (1), (2), (3) by — , —, —, adding and in-

tegrating, proves that

P\v?+v^)+mw'= F'', (B)

F being a constant, representing the resultant linear momentum
of the system.

Similarly, it is shown that

dTdT ,dTdT ,-dTdT .

;c- t:—h;^- ^T- +^^ ^5- is constant ;
or

AP(up + vq)+ CRwr=G, (C)

where G is a constant, representing the resultant angular

momentum of the system.

From equations (A) and (B),

A{ p^+ q^) = 2T- Or'-- Rw^- P{u^+ v^)

and, from equation (3),

i22^= p2(^^ _ ypy = p2(^2+ ^2)( p2+ q2) _ p-2^up+ Vqf

=i(s-^)(^"-^""'"''

so that 10 or Rw is an elliptic function of t.

Taking the axis Oz in the direction of the resultant impulse

F, and denoting by y^, y^, y^ the cosines of the angles between

Oz and OA, OB, OC, so that

Pu= Fy^, Pv= Fy^, Rw= Fy^;

then, with Euler's coordinate angles 6, 4>, \p;

yi= — sin0cos0, y2 = sin0sin^, y3= cos0,

P{up+vq)-=F&m Q{-p cos ^+ g sin
(l>)
= Fsm^d^^ ;

so that

d\p- G-CFr cos e

W' AFsin^e
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~ 'lAF i+cose"^ 2AF 1-COS0 dt^dt'
suppose ; and then

d(h .dxh- A C\
,
CFr-G cos 9

dt dt \ AJ AFam^d

"V AJ ^ dt dt
'

The equations given by KixcfahoW (Vorlesungen iiher mathe-

matische Physik, p. 240) for a, /3, y, the coordinates of with

respect to fixed axes O'a, 0'/3, O'y {O'y parallel to Oz) are

-^"= ^>+^^3^+^^3^ ^^'

dT dT dT
^'^=-">~"2agr-«33;r (8)

where Oj, ag, og denote the cosines of the angles between O'a

and OA, OB, OC ; and j8j, /32, /Sg, the cosines of the angles

between 0'/3 and OA, OB, 00.

Expressed \>y Euler's coordinate angles,

Oj= cos 6 cos ^ cos i/<-— sin ^ sin i/r,

Oj = — cos 9 sin cos i/f— cos sin \j/^,

ag= sin cos i/f

;

/3i= cosScos.^ sini/r+sin ^cos\/r,

^2= — cos sin sin i/r+ cos ^ cos i//-,

/33= sin0sinijir;

while 2'' = s^'^^^~si'i^^°s^\^'

g = cos0 0+sin sin 0ij^,

r= ^+ COS0l/r;

so that, after reduction,

Fa=Acos-\lr6+ {Cr—A cos 9 \^)sin sin xJa,

F/3=A sin\l^ 9- {Cr—A cos ^)sin 9 cos x/^,

dt F U
Writing Fx for ^cos 9 or jBtv, equation (D) becomes

F'^f 1 1 \
suppose, where n^= a'\p~p)'



APPENDIX. 34,5

Denoting the roots of the quartic Z= by x^, x^, x^, x^,

we may put, according to §§ 151, 152,

— p'c
X-
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We now suppose that u= a makes x=l, and u~b makes

x= —1; then

1 a,—
-P'c(9u-pa)

I , ^_ -P'<&b-pu)
(pa-pc){pu-pc)' (pb-fc)(fu-pc)'

p'a p'c _ _ .G-CFr f'b f'c _ .0+GFr
{fa-fcf~ '^ AFn ' {fb-'pcf~'^ AFn '

Then

<li'^i_ —Ip'O'i'PU — ^c)

<ki (pa— pc)(pu—

\fji^ -\f'a

fa —<gc fu — fa

-hliu-a)+ l^{u+a)-^a

;

and similarly

and therefore

%-\1a—— iPu+ i loo- -^ i-ij; i

where
P= ^(a-c)+ ^{a+c)+ ^ib-c) + ^(b+ c).

Also

sin^e =l-x^=(l+x){l-x)

_ f'Mfu- J3a)(^!>- fu)

(fa - fc){fb - fc){pu- fcf

_ cr^2c(7(tt— a)tr(tt+ a)(7(6 — tt)o-(6+ w)
~

o-(a— c)(T{a+ c)a-{ b— c)a-{b+ c)a-^{u— c)ar^{u+ c)'

so that

sin 0e'^= Oe - 5^" -V—'

—

i ) , i ,^{u— cjayw+c)

giving the projection on a plane perpendicular to Oz of the

motion of a point on the axis OG, relatively to ; also

P{u+ vi)= -FsinOe-f^,

p+ qi= ( — sme\p-+ i9)e-1":

We find also, as in § 224, that if the values a^ and 6^ of u
correspond to

then Oj— 6i= a— 6.
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But now introduce the condition

when, according to § 282, >// becomes pseudo-elliptic.

Putting ^^ta.n-^J^J^f^^^,

^=tan-\/(-l±^^±^ •

^-^»-'^-^°
)

;

" \\ l+aJg.l+CCa X— XQ.X— Xyl

and, employing h instead of a, this may also be written

^=tan-i \{
^-^^-^-^ x-x^.x-Xo

\_^

^ \\ 1— aj^.l— Xa X— Xl-i.X— XyJ'

30 that
1+^^.1+^̂

^

^-^^-^-^

aad therefore each is equal to —1, and

XgXa+ X^Ol>Y+ 2 = 0,

since Xg+Xa+xp+Xy= 0;

and, changing to the complementary angle,

^=tan-i/-^^-^-^^

-sm ^~—-_2^^ -cos y 2_2a;*
'

with fljo > x^ > a; > a;-), > a;,,.

Differentiating,

(Z^ (a;g+a^)(l +a;^)- 2(1 +a;ga;^)a; , ., cfo;_ /^
^=

{2-2x')JX '
^^''^

dt-''^'^'

,, ^ cZ^ ajs+a;^— (l+a;sa;-y)a; , , ^

so that ;jf
= n-^-^—^^—2~^ t'^(a'^+ a;^)

= in(a;o+ ««)- n-^ Tl^a •

Then -£+
J^^

= ^n(Xa+ Xa),

provided that- n(x^+Xa)= G/AF, nil+x^Xa)=Cr/A.

The quartic X must therefore break up into the two-

quadratics x^-^+g-l and .H^-J-l;aud

so that the requisite relation when a+ &= wa, is

2r-(7r^-^=^^=^^^ (^>
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Now
• a f. lx— X„.Xa.— X 1(1/-, Gv

, Q COS 6 „„\]

•
fl • /= IxB— x.x— xy /ri/,

,
Or QcosO „X\

SO that sm^O sin 2£= JX, sm^Q cos 2f
= -j^ ;

and ^=m<— i/r,

where
,. m= ln{x^-k-Xa) = hG/A F.

Also, from (7) and (8),

F{a cos i/r+ /3 sin ^) = J10

= ^TC^X/sin = J. 11 sin d sin 2f

;

-^(a sim/r— /3 cos \/r)= ((?';— ^1 cos 0\^)siu

GrF-G cofid
A a ^^=

j^f—.
—

^— = —An sin 6 cos zF.
M Sin d ^

Therefore Fa= An sin 0(sin 2^ cos
\J^
— cos 2f sin \}/)

=An sin sin(2^— >//)

= ^TOsin sin(2TOi— Si/')
;

F^ =An sin d cos(2^- 1/^)

= J.?i sin 6 cos(2mt— S\fr).

Now in the motion of a point on DC, relative to 0,

sin 0e*'^= sin cos(mi— ^)4-'isin 0sm{mt— ^)

— gimt( j
X— X(,.Xa— X . Ixp— X.X— Xy \

where a;= cos 61.

When h — a — wa, and y}r-^— \}r^ or <j) is pseudo-elliptic, we
shall find that (? and Cr are interchanged, and

7i(a;o+a;a) = Cr/.4,

n{\+ x^Xa) = GIAF;

and then ' 2r-Cr2-:^-= ; (F)

so that P2(w2+ vS') = ir2gin20,

p--\-q^= n%m'^Q.

As a numerical exercise, we maj' take, in addition to (F),

G= i>AFn, Gr=-2jlAn;
then X=x^-ZQx^+\<oJ1x-ro

= {x^- 2J7x+ 3)(a;2+ 2j7x- .5)

;

a;o=V7 + 2, a::3=-V + 2V3, x^=Jy-% x^= -J1 --IJ'^;

i/2
= 60, (/3= 88, 61 = 1+2^3, ^2= -2, 63=1-2^3;
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ipa=-ti, pb= l; a = §0,3, b = w,- Jft.3 (§ 225)

;

pc= 2^7+-S, p'c= -8^7-20, p2c = 5, p'2c= i^7.
Now we shall find that

sin^e cos 3(nt- \^) = (- 1+^7 cos 9- ^ cos^^)*.

sin^9 sin S{nt-\^)

= (V7- 2 cos + JV7 cos20)^(|- ^7 cos - J coa«0>.

MISCELLANEOUS EXAMPLES.

1. Construct a Table exhibiting the connexion between the
twelve elliptic functions

sn u, ns u, dc u, cd u
;

,
on u, ds tt, no u, sd u

;

dn tt, cs u, sc ii, nd u.

2. Construct a Table of the values of the sn, en, dn of
u+mK+nK'i in terms of snw, cnu, dnw; also of the elliptic

functions of ^(mK+nK'i), ior m, n= 0, 1,2, ....

3. Prove that, accents denoting differentiation,

(i.) sn u dn"u — sn"u dn u = sn m dn u, etc.

(suu)^, snusn'u, (sn'uf

(ii.) (cnu)^, cnucn'tt, (cn'u)^

(dnu)^ dnudn'u, (dn'M.)^

= jc'^n u cu u dn u.

(G. B. Mathews.)

4. Denoting by (m, n) the function

sn(Um— Un)cn (Um+ u„)

cn{Um— u„)sn{u^+Un)'

prove that

(4, 1)(4, 2)(4, 3)(2. 3)(3, 1)C1, 2)+(4. 1)(2, 3)+ (4, 2)(3, 1)

+ (4,3)(1,2) = 0.

Denoting by A, B, G the functions

an(t—x)sTi(y— z) sn(t— y)sn(z~x) sn(t— z)3n(x— y)

8n(t+x)sn(y+z)' STi{t+y)sn{z+ xy !in{t+z)sn{x— yy
prove that ABb+A+B+C=0.
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5. Prove that

(i-) /Ksnvdv=2ta.n\i'\KBn^u).

(ii-) //fsn(2tt+ a)(Z'U.= tanh~^{/csnusn(ii+a)}.

(iii.) /logBsudu= \-7rK'— ^K\ogl/K.

6. Determine the orbit in which

P= h^(v?+a^u^), the apsidal distance being a.

7. Rectify r§= a§cos|a

8. Prove that the perimeter of the Cassinian Oval of § 161

is either ^, ,= l^(i+g)-|^(l_lg),

iaK, ,=l^(l+^^ - l^(l --^) :

and draw the corresponding curves.

9. Prove that the length of the curve of intersection of two

circular cylinders, of radius a and 6, whose axes intersect at

right angles, is 8a / i -i _ 2 2^) "''P' '^ = '^ /^ >

and verify the result when a= b.

10. Prove that K and K' satisfy the differential equation

Deduce the relation

dKj^,_ j^dK'_ TT

die dk 4/<l-A;)'

and thence deduce Legendre's relation (§ 171).

11. Prove that CTj and cr^ of § 252 satisfy the differential

equation J(J-1)^^+-^
dj-li4

= 0-

12. Deduce the Fourier series for snu, cnu, dntt of §§ 266,

267 from the series for Zu of § 268, making use of Landen's

Transformations and of equations (28), (29), (30) of § 264.
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13. Prove that

^"^' p{u-a)-p{u-b)p{u+ a)-f(u+ b) \(pu-pa){pu-pb)j

14. Prove that, if a variable straight line meets the curve

in {x^, y-^)(x^, y^{x^, 2/3). then (§ 166)

—i-1 ?-| *=o.
Vi 2/2 2/3

15. Denoting the integral

rj^ by fa..

J y^— ax •'

where y is given as a function of x by the equation

x^ -\-y*—Zaxy = \,

prove that, for three collinear points,

fcCj

+

ix^+ fflJj= 3a.

16. Prove or verify that, with g^^O, the solution of Lamp's

differential equation

(i.) -
IJl

= 2^u is y = {83'tt ±J{- g,) }*
;

(ii.)
]

^4^2= 6Ft+ x/(%.<i) is 2/ = i<'u-i^(3r/3);

(iii.) ]-^2= l^u is 2/ = (^+^Fiw)(F»'^-

(Halphen, Memoire sur la reduction <:!,€< Equations diff^ren-

tielles, 1884.)

17. Determine, by means of elliptic functions, the motion of

liquid filling a rectangular box, due to component angular

velocities about axes through the centre parallel to the edges.

{Q. J. M., XV., p. 144 ; W. M. Hicks, Velocity and Electric

Potentials betiveen parallel planes, p. 274.)
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18. Prove that, with x= ^7ru/w and A = ^ti/w (§ 278),

^
\-K 0/0' '^i'' ''

e,0'
'^2'*^

03O'
"^^^"^ 00'

and thence convert the formulas (M) to (T) of § 249 into

Jacobi's notation.

19. Prove that (§ 264, 20*)

1/Q= Il'°(l - q^') ="2V"^"*"".
1=1 m=0

20. Prove that

K _ tanhVxJryir
*"'''

Jx" ^tanh2(r-^),rir7^'

21. Prove that" in Appendix II., p. 346,

p2c-p{a+b) =
4'A^F^n^'

^^"'^"'-^AFtA A^FV A'n? )'

,, ,, iCr 2T-Gr^-F''IR
^^«-^>=4Z^ A^^,?-

Work out the case of

2T-Cr^-FyR= 0,

G= 2AFn, Or= 2j2An.
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208, 254, 299

Duplication formulas, - 120

Dnrfege, - 117, 227

Dynamical problem, 74

Elastica, 87, 190

— tortuous, . 213

Electrification of two insulated

spheres, 287

Fileotrode, - . 278

Ellipse, rolling, - 71

— first negative pedal of, 73

Elliptic functions,

— addition theorem, 142

— complex multiplication of,

12, 203, 330
— double periodicity of, - - 254

— geometrical applications to

spherical trigonometry, 131

— multiplication of, 329

— reciprocal modulus, 24
— resolution of, into factors

and series, 277

Elliptic integral,

— of first kind, 4, 22, 30

— of second kind, 64, 175, 209
— of third kind,

108, 175, 191, 206, 302
— complete, - 8

— definition of, 5
— degenerate, - 41, 57

— factor of third kind, 226
— general, - 200
— graphs of, 66

— half period of, - - . 13

Elliptic integral

—

continued,

— inversion of, - - 30

— modulus complementary, - 9

— normalised, - - 203

— quarter period of, 8, 321

— quarter period, complemen-

tary, - - 9

— Tables of. 10, 11, 16, 177

— Weierstrass's defined, - - 42

Enneper, - - - 61, 326

Epitrochoid, 190

Eta function, 194, 282

Euler, - 142, 251

Euler's addition equation, 144, 166

— constant, 281

— equations of motion, 18, 101

— pendulum, 198

Fagnano's theorems, - 182

Forsyth, 298

Fourier, 66

— series, 285, 287

Fricke, 155

Fundamenta Nova, - - 310

Fuss, - - 121

Gauss, 137, 322

Gebbia, - - 220

Geuocohi's theorem, 264

Geodesies, - - 95

Glaisher, - 17, 33, 62, 116, 133, 194

Governor, Watt's, - - 78

Graphs of elliptic integrals, - 66

Graves, - - 178

Gudermann, - 5, 32, 90

Gudermannian, - 14

Half period, imaginary.



INDEX.
355

Herpolhode,

— points of inflexion,

Hess,

Hessian, -

Hicks,

Hill,

Hobsou,

Holzmiiller,

Homogeneity,

Homogeneous variables,

Hooke's law,

Hoyer, -

Hnygens,

Hyperelliptic function,

— integral,

Hyperbolic amplitude,

— functions,

Hypotrochoid,

62,

277,

203,

233

233

149, 156

288, 351

291

280, 330

257

247, 270

155

94

237

6

175

168, 309

15

15

190

Icosahedron form, 156

Imaginary period, 254

Induction, electric ooeflScient, 287

Inflexion, points of, on herpol-

hodes, - 233

Integrals,

— circular and hyperbolic, - 30
— hyperelliptic, - 160

— poles of, - 45, 53

Invariants, - 43, 62, 143

— absolute,

Jacobi, -

Jacobi's notation,

Jenkins, -

Jochmann,

45, 49, 143

5, 139, 160, 284

• 18, 50

84, 131

278

Kaleidoscope, - 293

Kepler's problem, 14

Kiepert, - 331

Kirohoff, - 87, 344

Kirchoff's kinetic analogue, 214

Kleiber, - - 190

Klein, - 35, 151, 271

Kronecker, 146

Eummell, 136

Lagrange, 131, 340

Lambert's series, 287

Lame's differential equations,

210, 216, 275
— parameters, 272, 274

Landeu's point, 23,117
— transformation, 55, 60, 186, 322

— second transformation, 120, 320

Lecornu, 212

Legendre, 4, 18, 64, 131, 323

Legendre's relation,

Lemniscate,

— rectification of,

Liina9on, -

Linear substitution,

— transformations,

Lintearia,

Lodge,

Love,

164, 178

199

33

190

143

163, 316

87

15, 278, 293

293

MacCullogh,

MaoMahon,
Mannheim,

Maxwell,

Mean anomaly,

Mercator's chart,

— Sumner lines.

Meridional part,

Michell,

Minding, -

Modular angle,

— equations,

— equation of third order.

Modulus of elliptic integral,

—changefrom, and itsreciprocal,

— complementary,

— singular.

179, 220

147, 295

- 221

79, 89, 272, 287

14

17

89

17

292

121

4

323, 327

323

4

24

9

331

Morgan Jenkins, - 84, 131

Motion,

— of a body in infinite liquid

under no forces, - 219, 342

— of a projectile, resisting

medium, 65

— of electricity or fluid, 266

— mean, of a planet, 14

— Poinsot's geometrical repre-

sentation, - 101

— solutions of Buler's equa-

tions of, - 28, 101

MUller, - 314
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Napier,

Nodoid,

Norm,

PAGE

137

95, 98

278

Octahedron form,

— irrationaility,

Orbits, central,

Oscillations,

— cycloidal,

— quadrantal,

— rectilinear,

— of pendulums, bell, etc.,

— vertical, of a carriage or ship,

Parameter, 191

Pendulum,

— Euler's,

— Navez, ballistic,

— performing complete revolu-

tions,

— period of,

— reaction of axis of suspension,

— simple equivalent,

— speed of,

— spherical.

Period, parallelogram,

— rectangle,

Poinsot,

Poinsot's geometrical repre-

sentation of motion,

Poles of integral,

Polhode, -

— separating, -

Poristic polygons, Poucelet's, -

— heptagons,

— pentagons,

— quadrilaterals,

— triangles,

Poundal, -

Price,

Pringsheim,

Projectile, trajectory of, for

cubic law of resistance, 244

Pseudo-elliptic, 242, 347

— integrals, Abel's, 228, 300

Quadrantal oscillations, 103

Quadri-quadric function, - 148

157

317

76

7

103

25

3

82

207

1

198

3, 12

18

8

82

3

3

214

46

270

233

101

255

101

230

121

130

128

126

124

1

3, 79

160
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Talbot's curve, 73

Temperature, stationary, 266

Theta function, 192, 282

— addition theorem for trans-

formation of, 325

Thomson, Sir W., 3, 86, 287

Thomson, J. J., 119, 145

Top, spinning, - 214

— degenerate cases of, 241

Tortuous elastica, 213, 237

Trajectory of projectile for

cubic law of resistance, 244, 316

Transformation of elliptic func-

tions,

— physical application of,

— first real,

— second real,

— theta functions,

— third and higher orders,

Triplication formulas,

Trochoids,

Turning points.
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